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Preface

Since in a standard situation (e.g. in the symmetric case), any Cp-contrac-
tion semigroup (and hence its generator) on a Hilbert space is uniquely de-
termined by the associated quadratic form, it is reasonable to describe the
properties of the semigroup and its generator by using functional inequalities
of the quadratic form. In particular, if the associated form is a Dirichlet form,
then the corresponding semigroup is (sub-) Markovian. The purpose of this
book is to present a systematic account of functional inequalities for Dirich-
let forms and applications to Markov semigroups (or Markov processes in a
regular case).

The functional inequalities considered here only involve in the Dirichlet
form and one or two norms of functions, and can be easily illustrated in many
cases. On the other hand, these inequalities imply plentiful analytic properties
of Markov semigroups and generators, which are related to various behaviors
of the corresponding Markov processes. For instance, the Poincaré inequality
is equivalent to the exponential convergence of the semigroup and the existence
of the spectral gap. Moreover, the Gross log-Sobolev inequality is equivalent to
Nelson’s hypercontractivity of the semigroup and is strictly stronger than the
Poincaré inequality. So, it is natural for us to ask for more spectral information
and semigroup properties from more general functional inequalities. This is
the starting point of the book.

In this book, we introduce functional inequalities to describe:

(i) the spectrum of the generator: the essential and discrete spectrums,
high order eigenvalues, the principal eigenvalue, and the spectral gap;

(ii) the semigroup properties: the uniform integrability, the compactness,
the convergence rate, and the existence of density;

(iii) the reference measure and the intrinsic metric: the concentration, the
isoperimetric inequality, and the transportation cost inequality.

For reader’s convenience and for the completeness of the account, we sum-
marize some necessary preliminaries in Chapter 0. Corresponding to various
levels of spectral and semigroup properties, Chapters 1, 3, 4, 5 and 6 focus
on several different functional inequalities respectively: Chapter 1 and Chap-
ter 5 introduce the above mentioned Poincaré and log-Sobolev inequalities
respectively, Chapter 6 the interpolations of these two inequalities, Chapter
3 the super Poincaré inequality, and Chapter 4 the weak Poincaré inequal-
ity. Each of these chapters presents a correspondence between the underlying
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functional inequality and the properties of the semigroup and its generator,
as well as sufficient and necessary conditions for the functional inequality to
hold. Moreover, the general results are illustrated by concrete examples, in
particular, examples of diffusion processes on manifolds and countable Markov
chains. These chapters are relatively (although not absolutely) independent,
so that one may read in one’s own order without much trouble.

Chapter 2 is devoted to diffusion processes on Riemannian manifolds and
applications to geometry analysis. In particular, the estimation of the first
eigenvalue is related to the Poincaré inequality, while the results concerning
gradient estimates, the Harnack inequality and the isoperimetric inequality
will be used in the sequel to illustrate other functional inequalities. The results
included in §2.2 concerning the first eigenvalue have been introduced in a recent
monograph [47] by Professor Mu-Fa Chen. Chen’s monograph emphasizes the
main idea of the study which is crucial for understanding the machinery of the
work, while the present book provides the technical details which are useful
for further study. Finally, in Chapter 7 we establish functional inequalities
for three infinite-dimensional models which have been studying intensively in
stochastic analysis and mathematical physics.

At the end of each chapter (except Chapter 0), some historical notes and
open questions for further studies are addressed. The notes are not intended
to summarize the principal results of each paper cited but merely to indicate
the connection to the main contents of each chapter in question, while the
open problems are listed mainly based on my own interests. Thus, these notes
are far from complete in the strict sense. At the end of the book, a list of
publications and an index of main notations and key words are presented for
reader’s reference. These references are presented not for completeness but for
a usable guide to the literature. I regret that there might be a lot of related
publications which have not been mentioned in the book.

Due to the limitation of knowledge and the experience of writing, I would
like to apologize in advance for possible mistakes and incomplete accounts
appeared in this book, and to appreciate criticisms and corrections in any
sense.

I would like to express my deep gratitude to my advisors Professor Shi-
Jian Yan and Professor Mu-Fa Chen for earnest teachings and constant helps.
Professor Chen guided me to the cross research field of probability theory and
Riemannian manifold, and emphasized probabilistic approaches in research,
in particular, the coupling methods which he had worked on intensively. Our
fruitful cooperations in this direction considerably stimulated other work in-
cluded in this book. During the past decade I also greatly benefited from col-
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laborations and communications with Professors M. Rockner, A. Thalmaier,
V. 1. Bogachev, F.-Z. Gong, K. D. Elworthy, M. Cranston and X.-M. Li. In
particular, the work concerning the weak Poincaré inequality and applications
is due to effective cooperations with Professor M. Rockner. At different stages
I received helpful suggestions and encouragements from many other mathe-
maticians, in particular, Professors S. Aida, S. Albeverio, D. Barkry, D. Chaifi,
D.-Y. Chen, T. Couhlon, S. Fang, M. Fukushima, G.-L. Gong, L. Gross, E.
Hsu, C.-R. Hwang, W.S. Kendall, R. Leandre, M. Ledoux, Z.-H. Li, Z.-M. Ma,
P. Malliavin, Y.-H. Mao, S.-G. Peng, E. Priola, M.-P. Qian, 1. Shigekawa, D.
Stroock, K.-T. Sturm, Y.-L. Sun, J.-L. Wu, L. Wu, J.-A. Yan, T.-S. Zhang,
Y.-H. Zhang and X.-L. Zhao. I would also like to thank Professor Yu-Hui
Zhang, Mr Wei Liu and graduate students in our group for reading the draft
and checking errors.

Finally, it is a pleasure to acknowledge the generous support of this work
by the National Natural Science Foundation of China (1002510, 10121101), the
Teaching and Research Awarded Project for Outstanding Young Teachers, and
the 973-Project.

Feng-Yu Wang
Beijing, June 2004
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Chapter 0

Preliminaries

In this chapter we briefly recall some necessary preliminaries of the book from
Dirichlet forms, Markov processes, spectral theory and Riemannian geometry.
Results included in this part are well-known and fundamental in these fields.
§0.1 and §0.2 are mainly summarized from [137], most results in §0.3 can be
found in [225] and [155], and §0.4 is mainly selected from [33] and [35].

0.1 Dirichlet forms, sub-Markov semigroups and
generators

Let us start with some basic facts on semigroups, resolvents and generators.
Let (B, ||-||) be a real Banach space. A pair (L, Z(L)) is called a linear operator
on B if Z(L) is a linear subspace of B and L : Z(L) — B is a linear map. We
sometimes simply denote the operator by L. The operator L is called closed if
its graph {(f,Lf): f € 2(L)} is closed in B x B. A linear operator (L, Z(L))
is called closable if the closure of its graph is the graph of a linear operator
(L, 2(L)) which is called the closure of (L, 2(L)).

Definition 0.1.1 A family {F;},5, of linear operators on B with () = B
for all t > 0 is called a strongly continuous (or Cy-) contraction semigroup on
B, if

() limPf=PRf=f [€B.

2) (|7 :=sup{||Pf[| - f €B,[If <1} <1,  t>0.

(3) PPy = Prus,  t,5 0.

For a given Cp-contraction semigroup {P;};>0 (simply denoted by P; in
the sequel), define

I(L) = {f €B: %i_rg%%(]%f ) exists in IBS},

1

Lf=lim (RS~ f), feoL).
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Then (L, 2(L)) is a linear operator on B, which is called the (infinitesimal)
generator of P;. The following well-known result provides a complete charac-
terization for generators of Cp-contraction semigroups (see e.g. [225]).

Theorem 0.1.1 (Hille-Yoshida Theorem) A linear operator (L, Z(L)) is the
generator of a Cy-contraction semigroup if and only if

(1) L is densely defined, i.e. 2(L) is dense in B.

(2) For any A > 0,(\ — L) is invertible and ||(A — L)~1|| < A7L
In this case the corresponding semigroup is uniquely determined by L and is
denoted by P, = e't, and L is closed.

Let (L, Z(L)) be the generator of a Cp-contraction semigroup P;. We have

Ryvf=(\—-L)'f= / e NP, fds, feB, A>0.
0

We call {R) : A > 0} the resolvent of L or P, see §0.3 for this notion of linear
operators on complex Banach spaces.

Now, let us consider B := H, a real Hilbert space with inner product (,).
Then an operator (L, Z(L)) provides a bilinear map & : Z(L) x (L) — R
with &(f,g9) == —(Lf,g) for f,g € Z(L). In general, (&, 2(&)) is called a
bilinear form on H if 2(&) is a linear subspace of Hand & : (&) x 2(&8) — H
is a bilinear map. If moreover &(f, f) > 0 for f € 2(&), then (&,2(£)) is
called a positive definite form on H. For a bilinear form (&, 2(&)), we define

its symmetric part by &(f,g) := %(éa(f, 9)+ &g, f)), f,g € 2(&£). Moreover,
let 6a(f,9) = alf,9) +&(f,9). f,9 € 2(&),a > 0.

Definition 0.1.2 Let (&, Z2(&)) be a densely defined positive definite form
on H.

(1) (&,2(&)) is called symmetric if &(f,g9) = &g, f), f,9 € 2(&).

(2) (&, 2(&)) is called closed if (&) is complete under the norm &7,

(3) (&,2(&)) is called a coercive closed form on H if it is closed and there
exists a constant K > 0 such that

&(f,9)| < K&(f H)Y2E(9,9)%,  f.ge 2(&). (0.1.1)

Condition (0.1.1) is called the weak sector condition.
The following result gives a correspondence between the coercive closed
forms and the generators of Cp-contraction semigroups.

Theorem 0.1.2 (1) Let (&,2(&)) be a coercive closed form. Define

D(L):={f € D&): the map &(f,-) : (&) — R is continuous under || - ||},
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and for f € P(L) define Lf € H via —(Lf,g) = &(f,g) forallg € 2(&). Then
L is the generator of a Cy-contraction semigroup P, with resolvent {Rx}aso
satisfying

Ry\(H) C 2(&) and Ex(Rrf,9) = {f,qg), feH,ge 2(&),\>0.
(0.1.2)

In particular, (L, 2(L)) satisfies the weak sector condition: there exists K > 0
such that

((1—-L)f. 9l <EV(A-LD)f, /{(1-L)g,9), fge2(L). (0.13)

(2) If (L, 2(L)) satisfies (0.1.3) and generates a Co-semigroup, then there
exists a unique coercive closed form (&, 2(&)) such that 2(&) is the comple-
tion of 2(L) with respect to 511/2 and

@@(f7g):_<Lf7g>7 f,gE@(L),

Furthermore, the resolvent { Ry}x>o satisfies (0.1.2).

Finally, let us consider the Markovian setting. Let (E,.%, 1) be a measure
space and let H := L?(u1), the set of all measurable real functions which are
square-integrable with respect to u, that is, letting #(E) be the set of all
measurable real functions on F, we have

) = {7 € 2E) () 1= [ Pap < oo},

We write f < g or f < g if the corresponding inequality holds u-a.e.

Definition 0.1.3 (1) A bounded linear operator P : L?(u) — L?(u) is called
sub-Markovian if 0 < Pf < 1forall f € LQ(,u) with 0 < f < 1. If furthermore
P1 =1 then P is called a Markov operator. A semigroup {P;}¢>o is called
a sub-Markov (resp. Markov) semigroup if each P, is sub-Markovian (resp.
Markovian).

(2) A closed densely defined linear operator (L, 2(L)) on L?(p) is called a
Dirichlet operator if (Lf,(f—1)") < 0forall f € Z(L). If moreover 1 € Z(L)
and L1 = 0 then L is called a conservative Dirichlet generator.

(3) A coercive closed form (&, 2(&)) on L?(p) is called a Dirichlet form if
for any f € 2(&), one has fT Al € P(&) and

EF+fEALF—fEAD 20,  EF—FIALF+FTAL 20, (0.14)

A Dirichlet form (&, 2(&)) is called conservative if 1 € 2(&) and &(f,1) =
E(1, f)=0forall f e 2(&).
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Proposition 0.1.3 (1) If (&, 2(&)) is a Dirichlet form then so is its sym-
metric part (€, 2(&)).

(2) A symmetric closed form (&,2(&)) is a Dirichlet form if and only if
for any f € 9(&) one has ft A1 € (&) and

E(fTALITAL) SE, ) (0.1.5)

(3) A symmetric closed form (&,2(&)) is a Dirichlet form if and only if
forany T : R — R with T(0) = 0 and |T(z) — T'(y)| < |z —y| for all z,y € R,
one has To f € 2(&) and &(T o f, T o f) < E(f, f) for all f € D(&).

(4) Let (&,2(&)) be a Dirichlet form. If f € 2(&) and g € L?(u) satisfies
9l < [f]19(x) = g(v)| < |f(x) = f(y)l, then g € D(&) and &(g,9) < E(f, [)-

Theorem 0.1.4 Let (L, Z(L)) generate a Cy-contraction semigroup {P;}+>0,
and let {R)} x>0 be the corresponding resolvent. Then the following are equiv-
alent.

(1) L is a Dirichlet operator (resp. conservative Dirichlet operator).

(2) {P;:}t>0 is sub-Markovian (resp. Markovian).

(3) For each X\ > 0, ARy is sub-Markovian (resp. Markovian).
If (L,2(L)) satisfies the weak sector condition (0.1.3) and (&, 2(&)) is the
associated coercive closed form, then they are also equivalent.

(4) For any f € (&) one has ftA1 € D(&) and E(f+fTAL f—fTAL) >
0 (resp. moreover 1 € 2(&) with &(1, f) =1 for all f € 2(&)).

Corollary 0.1.5 Let (&,2(&)) be a coercive closed form associated to the
generator (L, Z(L)), the semigroup {P;}i>0 and the resolvent {Ry}x>o. Let
Py (resp. RY) be the adjoint operator (see Definition 0.5.2 below) of Py (resp.
Ry) on L%(u) fort >0 (resp. A > 0), and let (L*, Z(L*)) be the corresponding
generator. Then the following are equivalent.
(1) (&,2(&)) is a Dirichlet form (resp. conservative Dirichlet form).
(2) L and L* are Dirichlet operators (resp. conservative Dirichlet operators).
(3) {P:}t=0 and {P}}i>0 are sub-Markovian (resp. Markovian).
(4) ARy and AR, are sub-Markovian (resp. Markovian) for each X > 0.
In applications, & is often explicitly defined on a smaller domain Z(&)
so that (&,2(&)) is not closed. To determine a closed form, one needs to
find a closed extension of (&, 2(&)). To this end, we introduce the notion of
closability of the form.

Definition 0.1.4 A positive definite bilinear form (&, Z(&)) is called closable
if it has a closed extension (&, 2(&")), i.e. (&', 2(&")) is a closed form with
(&) > P(&) and &' | g5y = &.
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Proposition 0.1.6 Let (&, 2(&)) be a positive definite bilinear form satis-
fying the weak sector condition (0.1.1).

(1) (&,2(&)) is closable if and only if for any &-Cauchy sequence {f,} C
D(&) (fi-e. E(fn— fmsfn— fm) — 0 as n,m — 00) with f, — 0(n — o) in
L3(p), one has &(fn, fn) — 0(n — o).

(2) (&, 2(&)) is closable if and only if so is its symmetric part (&, D(&)).

(3) If (&,2(&)) is closable, then it extends uniquely to the completion of
P (&) with respect to the norm 511/2, denoted by (&, 2(&)). If moreover 9(&)
is dense in L?() then (&, 2(&)) is the smallest coercive closed form extending
(&,2(&)), and is called the closure of (&, 2(&)).

Proposition 0.1.7 (1) Let (L,2(L)) be a negative definite operator on
L3(p), satisfying the weak sector condition (0.1.3). Define

éa(fag) = _<Lfvg>v f,gE.@(L).

Then (&,2(L)) is closable on L?(u).
(2) Let (&%), 2(6®)),k € N, be closable (resp. closed) positive definite

symmetric forms on L?(u). Let

2(6) = {f e N 26W): Y 5. 1) < oo},
k=1

k>1

Ef9)=> W(f9,  f.ge2(6).
k=1

Then (&, 2(&)) is closable (resp. closed) on L*(p).
(3) Let (&,2(&)) be a coerceive closed form and {f,} C 2(&) such that
{E(fn, fn)} is bounded and f, — f € L*(u) as n — oo, then f € 2(&) and
lim E(fu, )= E(f,f) < lim & (fa, fn)-

n—oo
Finally, the following result (see [91, Theorem 1.5.2]) enables us to extend

the domain of a Dirichlet form.

Theorem 0.1.8 Let (&, 2(&)) be a symmetric Dirichlet form on L?(u). For
any measurable function f, if there exists an &-Cauchy sequence {fn,} C 2(&)
such that f, — f p-a.e., then the limit &(f, f) := lim &(fn, fn) exists and

does not depend on the choice of {fn}. If moreover f € L*(u) then f € 9(&).
According to Theorem 0.1.8 we may extend the Dirichlet form to the ex-
tended domain

De(8):={f € B(E): fn— [ p-a.e. for some
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&-Cauchy sequence {f,} C 2(&)},

where Z(F) is the set of all measurable real functions on E. Throughout the
book, all real or complex functions are assumed to be finite.

0.2 Dirichlet forms and Markov processes

In this section we introduce the correspondence between Dirichlet forms and
Markov processes, i.e. to show how these two objects determine each other.
We first recall the notion of Markov processes.

Let E be a Hausdorff topological space with the Borel o-field .%#, that is,
the o-field induced by open sets. A stochastic process with state space E
describes the behavior of a particle randomly moving on E. If the particle is
allowed to move out from F, then we add a new point A to stand for the “died
state” of the particle. Thus, the whole state space becomes Ea := E|J{A}
equipped with the natural one-point compaction topology, i.e. a subset G of
Ea is open if it is either an open set in E or a set containing A with compact
complement. If in particular F itself is compact, then A is isolated. Let .Fa
be the corresponding Borel o-field. For any function f on E, we extend it to
EA by letting f(A) = 0.

For simplicity, we only consider the standard Markov process defined on
the canonical path space over E. A map w. : [0,00) — FE is called a canonical
path if it is right continuous and has left limit at each point ¢ > 0 with w; # A.
Let {2 denote the set of all canonical pathes over E such that w; = A for all
t > &(w) :=1inf{t > 0:w; = A}, where £ is called the lifetime. For each t > 0,
let

xp: 2 — B xp(w) = wy, w € £,

and let % = o(zs : s < t) be the smallest o-field on {2 such that z, is
measurable for all s < t. Let Fo = o(zy : t > 0). The family {%}i>0 is
called the natural filtration of the path process over E. To make the filtration
right continuous, let F;" := s>t Fs,t = 0. In the sequel, whenever (£2,.7)
is equipped with a probability measure P, the filtration under consider is
automatically extended to its completion with respect to PP.

Definition 0.2.1 A family of probability measures {P* : x € Ea} on
(2, Foo) is called a Markov process on E, if

(1) P¥(zg € A) = 0(A) := 14(x),x € Ean,A € Fa, where 14 is the
indicator function of A. In particular, P2 (z; = At > 0) = 1.

(2) For any I' € Fo.,P(I") is .#a-measurable.
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(3) For any s,t > 0 and any x € E, A € Zp,
P¥(xpys € A|Fs) = PP (2445 € Alzs), P*-a.s., (0.2.1)

where P?(-|z4) is the conditional probability of P* under the o-field induced
by xs. The equation (0.2.1) is called the Markov property (with respect to the
filtration {.%}). If for any « € E one has P*({ =00) =1, then we may drop A
and call {P*:x € E'} a nonexplosive (or conservative) Markov process on E.
Given a Markov process {P* : x € Ea}, and given v € Z(Ea), the set
of all probability measures on Fa, let P¥ := P*v(dx), which is called the

En
distribution of the Markov process starting from v.

In this book, we only consider the time-homogeneous Markov process for
which the Markov property (0.2.1) can be written as

P*(z44s € A|Fs) = PP (xp € A), P*-as.,x € Ea, A € Fp,s,t > 0.
(0.2.2)
For a time-homogenous Markov process {P* : z € Fa}, define

Pif(x) == E"f(z;) := /Q f(z)dP*,  fe B.(E),z€E,

where A, (E) is the set of nonnegative measurable functions on E. Since
f(A) =0 by convention, we have

Py f(z) = E* f(z¢) 1<y, reFE,t>0.

It is easy to see from (0.2.2) that {P;};>¢ is a sub-Markov semigroup on
By(E) ={f € B(E) : || f|| :=sup|f| < oo}, which is a Banach space and the
norm is called the uniform norm.

To introduce the definition of strong Markov processes, let us recall the
notion of a stopping time. A mapping 7 : 2 — [0, 00 is called a {.%; }-stopping
time if {7 < t} € % for all ¢ > 0. Given a stopping time 7 we define the
o-field

Fri={l € Foo : T[{T <t} € F, t >0},

Definition 0.2.2 A time-homogenous Markov process {P? : z € Ea} is
called a strong Markov process if for any {.%, }-stopping time 7, any v € & (FEa)
and any A € Fx,

PV (x4, € AlZ) =P (2 € A), PY-as. on {7 < oo}. (0.2.3)

Now, let us connect Markov processes with Dirichlet forms.
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Definition 0.2.3 Let u be a measure on (E,.%#). Let (&, 2(&)) be a Dirich-
let form on L?(u) with {T};};>0 the associated sub-Markov Cp-contraction
semigroup. A Markov process {P* : x € FEa} is called associated with
(&,2(&)) if its semigroup P, satisfies P,f = T;f p-a.e. for all t > 0 and
all f € By(E) ( L2().

Proposition 0.2.1 Let {P? : x € En} be a Markov process with semigroup
{Pi}i>0. If {Pi}i>0 is strongly continuous on L*(u) with generator satisfying
the weak sector condition, then P; is associated with a unique coercive closed
form (&,2(&)) such that for any f € D(&) one has fT A1 € (&) and
E(f+fTALf—fT A1) > 0. If moreover P} is also sub-Markovian, it is

the case when p is a Pi-supermedian measure, i.e. / P, fdu < / fdu for all
E E

f e PBL(E), then (&, 2(&)) is a Dirichlet form.

Remark 0.2.1 Assume that p is finite and P;-supermedian. Let C'(E) (resp.
Cy(E)) be the set of all continuous (resp. bounded continuous) real functions
on E. Then for any f € Cy(F), the right-continuity of the process implies
Fif — fandhence || P f—fl|r2(,) — 0ast — 0. If moreover o(C(E)) = 7, i.e.
the Borel o-field is induced by the class of continuous functions, then C(E) is
dense in L?(u) and hence {P;};>¢ is a sub-Markov Cp-contraction semigroup
on L%(u). For general u , {P;}:>0 is strongly continuous if

¢ :={f € Cy(E) m L*(p) : {Pif }iejo,1) is uniformly integrable in L*(p)}

is dense in L?(u).

Definition 0.2.4 Let (&, 2(&)) be a Dirichlet form on L?(p).

(1) For any K C E, let 2(&)k :={f € 2(&) : flke =0 p-a.e.}.

(2) An increasing sequence {Kp,},>1 of closed subsets of E is called an
&-nest it |J 2(8)k, is dense in (&) with respect to 511/2.

n>1
(3) A subset N C E is called &-exceptional it N C (| K¢ for some &-nest

n>1
{Kn}nQI'
(4) A function f is called &-quasi-continuous if there exists an &-nest
{Ky}n>1 such that f|g, is continuous for each n > 1.
We now introduce the notion of quasi-regular Dirichlet form which is as-
sociated with the special standard process.

Definition 0.2.5 A Dirichlet form (&, 2(&)) on L?(u) is called quasi-regular
if
(1) There exists an &-nest {K;, },>1 of compact sets.
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(2) The set {f € (&) : f has a &-quasi-continuous p-version} is dense in
2(&) with respect to é~”11/2.

(3) There exist an &-exceptional set N C E and {fn}n>1 C Z2(&) having
&-quasi-continuous p-versions { fn}n>1 separating the points of N€.

Theorem 0.2.2  Assume that o(C(E)) = .%. A Dirichlet form (&, 2(&))
on L?(u) is quasi-regular if and only if it is associated with a u-tight special
standard process {P* : x € Ea}, i.e. the process is strongly Markovian with
respect to {.F;7} and satisfies

(1) For some (and hence all) v € P(EA) equivalent to p, if T,7,(n > 1)
are F;" -stopping times such that T, — T, then ¥, — x.(n — o) P-a.s. on
{r <&}, and @+ is \/,,5, F7, -measurable. As mentioned above the filtration is
understood as its completion with respect to PY.

(2) There exists an increasing sequence {Ky}n>1 of compact metrizable
sets in E such that IP’“(JLH&O oxe < &) =0, where ogc :=inf{t > 0: 2, ¢ Ky, }.
In this case P, f is &-quasi-continuous for allt > 0 and all f € By(E)( L (),
i.e. the process is properly associated with (&, 2(&)).

Let E be a locally compact separable metric space with p being a positive
Radon measure of full support, i.e. p are finite on compact sets and strictly
positive on non-empty open sets. Let Co(FE) be the set of all continuous real
functions with compact supports. Then we call a symmetric Dirichlet form
(&,2(&)) on L?(u) regular if 2(&)(Co(E) is a core, i.e. it is dense in Z(&)
under the norm éall/ ? and dense in Cy(E) under the uniform norm. Moreover, a
strong Markov process is called a Hunt process if it is strongly Markovian with
respect to {.#,"} and quasi-left continuous, i.e. for any v € Z(Ea) and any
;T -stopping times 7, 7,(n > 1) with 7, — 7, one has x,, — z,(n — co0) P’-
a.s. on {7 < oco}. The following result is taken from [91, Theorem 7.2.1].

Theorem 0.2.3 If (&,2(&)) is a symmetric reqular Dirichlet form on
L?(p), then it is associated with a p-symmetric Hunt process.

0.3 Spectral theory

Let (L, 2(L)) be a linear operator on the complex Banach space (B, ||.||).

Definition 0.3.1  Let p(L) be the set of all A € C such that the range
R(\—L) of \—L is dense in B and A— L has a bounded inverse Ry := (A—L)~1.
We call p(L) the resolvent set of L and Ry the resolvent of L at A for each
A € p(L). Moreover, o(L) := C\ p(L) is called the spectrum of L and is
decomposed into the following three disjoint parts:
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(a) The point spectrum op(L) is the set of all X € C such that there exists
f #0with Lf = Af, i.e. A — L does not have any inverse. The element f is
called an eigenvector of L corresponding to the eigenvalue A.

(b) The continuous spectrum o.(L) is the set of all A € C such that A — L
has an unbounded densely defined inverse.

(¢) The residual spectrum o,(L) is the set of all A € C such that A — L has
an inverse whose domain is not dense.

Finally, the above notions of a linear operator on a real Banach space are
defined by those of the complexification of the operator.

Proposition 0.3.1  Let (L, Z(L)) be closed. Then for any X € p(L), Ry :=
(A — L)~ is defined on the whole space, i.e. Z(\ — L) = B.

Definition 0.3.2 Let (H, (,)) be a real or complex Hilbert space, and let
(L, 2(L)) be a densely defined linear operator on H.

(1) Let 2(L*) be the set of all f € H such that there exists (and hence
unique) g € H satisfying (Lh, f) = (h,g), h € Z(L). Let L*f := g for f €
P(L*). We call (L*, 2(L*)) the adjoint operator of (L, Z(L)).

(2) (L, 2(L)) is called symmetric if L* D L,i.e. (L*, 2(L*)) is an extension
of (L, 2(L)).

(3) If L* = L, then (L, Z(L)) is called self-adjoint. If L* is self-adjoint,
ie., L™ = L* then (L,Z(L)) is called essentially self-adjoint.

Proposition 0.3.2 Let (L, 2(L)) be a densely defined operator on H. Then:

(1) (L*,2(L*)) is closed, hence any self-adjoint operator is closed.

(2) L is closable if and only if 2(L*) is dense, in this case L = L** and
L* =L~
Theorem 0.3.3  Let (L, Z(L)) be a densely defined negative definite sym-
metric operator on H. Then the quadric from &(f,g) := —(Lf,g) defined
on 2(L) is closable and its closure is associated with a unique self-adjoint
operator which is called the Friedrichs extension of (L, Z(L)). (L,2(L)) is

essentially self-adjoint if and only if its closure is self-adjoint, in this case the
closure is the unique self-adjoint extension.

We now consider the spectrum of a self-adjoint operator, which is deter-
mined by the resolution of identity (or the spectral family).

Definition 0.3.3 A family of projection operators {E) : A € R} on H is
called a resolution of the identity if
(1) E>\1E>\2 = E>\1/\)\27 )‘17 >\2 S R.
(2) E_oof :== lim E\f =0, Exof:= lim E\f = f, feH.
A——00 A—00
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(3) E)\+ = F,,ie. )\lzim)\E)‘lf = E)\f, f € H.

Proposition 0.3.4 Let {E) : A € R} be a resolution of the identity. For any
frg € H, (E.f, g) is a boundedly variational function and hence d{E\f, g) is a
signed measure on R. In particular, if |f|| = 1 then d||Ex(f)|? := d(Exf, f)
1 a probability measure.

Theorem 0.3.5 (L,2(L)) is a self-adjoint operator on H if and only if
there exists a unique resolution of the identity {Ey : A € R} such that

Lf_/Z)\dE,\f, @(L)—{feH:/Z)\dE,\f exists in H}, (0.3.1)

where / AME\f is defined as the Riemann integral on H.

—0o0
Remark 0.3.1 Let F be a complex-valued Borel function on R. Then
/ F(\)dE\,f exists if and only 1f/ |[E(\)A|Exf||* < oo. In particu-

lar, if F' is a real-valued continuous function, then (F(L),Z(F(L))) defined
below is a self-adjoint operator:

Dr= [ a2 = {1 [T F0RIBP <.

—00

Definition 0.3.4  The resolution of the identity {E) : A € R} satisfying
(0.3.1) is called the spectral family of (L, Z(L)).

Theorem 0.3.6 Let (L, 2(L)) be a self-adjoint operator on H. Then:

(1) o(L) CR and o,.(L) = @.

(2) XA € 0p(L) if and only if Ex # Ex_, and the eigenspace of X, i.e. the
space spanned by eigenvectors with eigenvalue X, is Z(Ex — Ex_).

(3) A € 0.(L) if and only if Ex = Ex_ and E\, # E\, for any \1 < A < Aa.
In other words, o.(L) = o(L) \ op(L).

(4) For any real continuous function F, one has o(F(L)) = F(o(L)). If
moreover F is strictly monotonic then o,(F(L)) = F(o,(L)).

Theorem 0.3.6 (4) is called the spectral mapping theorem, which follows
immediately from the definition of F'(L). Indeed, for any A\g € o(L), there
exists {fp} C Z(L) with || f|| = 1 such that the support of dE} f,, is contained

1 1
in [)\0 o+ —]. Then it is trivial to see that |F(L)fn — F(ho)fal <
n n
SUp|p_xo|<n—t [ F'(A) = F'(Xo)| — 0 as n — oo. Thus, F(Ao) € o(F(L)). Since
the spectrum is closed, we obtain o(F(L)) > F(c(L)). On the other hand,



12 Chapter 0 Preliminaries

if Ao ¢ F(o(L)), then there exists ¢ > 0 such that |[F(\) — Ag| > ¢ for all
A € o(L). Therefore, for any f € H with || f|| =1,

1P =20flP = [ E0) =P AIBI > <
Thus, A\g ¢ o(F(L)). The second assertion of (4) holds since when F' is strictly
monotonic, A is an eigenvalue of L if and only if so is F'(A) of F(L).

Definition 0.3.5 Let (L, Z(L)) be a self-adjoint operator on H. We write
A € 0ess(L), the essential spectrum of L, if for any € > 0 the closure of the
range of 1(x_. xy¢)(L) is infinite dimensional. We call o4(L) := o(L) \ 0ess(L)
the discrete spectrum of L.

Proposition 0.3.7 Let (L, Z(L)) be a self-adjoint operator on H.

(1) A € g4(L) if and only if X is isolated in o(L) and is an eigenvalue with
finite multiplicity, i.e. its eigenspace is finite dimensional.

(2) A € oess(L) if and only if X\ is either a limit point in o(L) or an
eigenvalue with infinite multiplicity.

The following Weyl’s criterion follows immediately from the definitions of
o(L) and oess(L) but is very useful in applications (see [155, VII.12]).

Theorem 0.3.8 (Weyl’s Criterion) Let (L, Z(L)) be a self-adjoint operator
on H.

(1) X€ o(L) if and only if for any € > O there exists a unit f € P (L) such
that ||Lf — M\f]| < e.

(2) X € gess(L) if and only if for any € > 0 there exists an orthonormal
sequence { fntn>1 C Z(L) such that |Lf, — Afnl| < e for any n > 1.

To define the discrete spectrum for general closed operators on B, let
A € o(L) be isolated, i.e. there exists ¢ > 0 such that {z € ¢ : |z — \| <
et o(L) = {A}. Then (see [155, Theorem XII.5]) for any r € (0,¢),

1

Py = —— (L —2)"tdz

2mi |z—A|=r

exists and is independent of r. Moreover, P is a projection, i.e. P)? = P,.

Definition 0.3.6  We write A € g4(L), the discrete spectrum of a closed
operator (L,Z(L)), if A € o(L) is isolated and the range of Py is finite-
dimensional. We call oess(L) := o(L) \ 04(L) the essential spectrum of L.

The following result provides some useful descriptions of the essential spec-
trum (see [114, Theorem 3.6.29]), where the first assertion is called the Weyl
theorem (see [155, XIII.4]). A linear operator P on B is called compact if it
sends bounded sets onto relatively compact sets.
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Theorem 0.3.9 (1) If B = H and (L,2(L)) is self-adjoint, then for any
compact operator L, L+ L is well-defined on (L) and 0ess(L + L) = 0egs(L).

(2) Let (L,2(L)) be a closed operator generating a Cy-contraction semi-
group {P;}i>0 on B. If B = H and L is self-adjoint, then the following are
equivalent.

(1) oess(L) = @, i.e. the spectrum of L is discrete.

(i) Ry := (A — L)~ is compact for some X\ € p(L).

(iii) Ry is compact for all X € p(L).

(iv) Py is compact for all t > 0.

(v) P, is compact for some t > 0.

In general, (iv) implies (iii), (iii) is equivalent to (ii) and implies (i).

In general, a Cy-contraction semigroup P, on a Banach space satisfies (iv)
if and only if (iii) holds and P; is equicontinuous, that is, ||Ps — Pi|| — 0 as
s — 0 for all ¢ > 0, see e.g. [181, Theorem 6.2.1].

Since the compactness of P, (or Ry) is crucial for the generator to have
discrete spectrum, we focus on the analysis of compact operators. First, let us
introduce the notion of the spectral radius and the essential spectral radius.

Definition 0.3.7 Let P be a bounded linear operator on B. We call r(P) :=
sup{|A| : A € o(P)} the spectral radius and ress(P) := sup{|A| : X\ € gess(P)}
the essential spectral radius of P.

It is clear that

r(P) = lim [P = inf [P (03.2)

Next, by Theorem 0.3.9(1), the essential spectral radius of a compact operator
is zero. This leads us to search for a formula of ress(P) analogous to (0.3.2)
by using the measure of noncompactness instead of the operator norm.

Definition 0.3.8 For a set D C B, the quantity

B(D) := inf {r > 0 : there exist fi,---, f, € B such that D C U B(fi,r)}
i=1

is called the measure of noncompactness of D, where B(f;,r) := {f : || f —
fill < r}. For a linear operator P we call 3(P) := 3(PB(0,1)) its measure of
noncompactness.

The following theorem due to [149] (see also [145]) provided a formula of
Tess(P)-
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Theorem 0.3.10  For any bounded linear operator P on B (i.e. P sends
bounded sets onto bounded sets), we have
Fess(P) = lim B(P™)Y/™ = inf g(P™)'/". (0.3.3)
n—oo n>=1
We now consider B := L (1) (p € [1,00)), the complexification of LP(u) :=
{f €B(E): u(|f?) < oo} for a o-finite measure space (E,.Z, u). In this case

it is trivial to see that if P is compact then for any g € Lf (1) with [g] > 0,
one has

lim sup u(|Pf["1qppsrgn) = 0, (0.3.4)
TIf <1
where || - ||, is the norm in L (x). This leads to the following notion of
semicompactness.

Definition 0.3.9 (1) The following quantity is called the measure of non-
semicompactness of a set D C Lt (p):

p(D) = gelLf,g(u) sup 1117151911 s
and p(P) := p(PB(0,1)) is called the measure of non-semicompactness of P.
Moreover, D (resp. P) is called semicompact if p(D) = 0 (resp. p(P) = 0).

(2) D is called order bounded in LY (u) if there exists nonnegative u €
LP(p) such that D C [—u,u] := {f € LY(n) : | f| < u}. An operator is called
order bounded if it sends order bounded sets onto order bounded sets.

(3) An operator P is called AM-compact if it sends semicompact sets
onto relatively compact sets, or equivalently sends order bounded sets onto
relatively compact sets.

The following result is due to [183] (see also [71] for the context of Banach
lattice).

Theorem 0.3.11  If P is order bounded and AM-compact on LY. () then
B(P) = p(P). Consequently, an order bounded operator is compact if and only
if it is semicompact and AM -compact.

In applications, it is convenient to rewrite the quantity p in the following
simple way. We leave the proof as exercise.

Proposition 0.3.12  For any strictly positive ¢ € LP(u) (which exists since
p is o-finite), one has p(D) = lim supscp | fLfsrgpllp- Consequently,
r—o00
p(P) is equal to the following LP-tail norm of P: |[P|,r = lim supjs <

T—00

I(Pf)Lgpsisreyllp:
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We recall the following two interpolation theorems which are crucial in the
analysis of semigroups.

Theorem 0.3.13 (1) Riesz-Thorin’s interpolation theorem Let 1 < p1,p2,
q1,q2 < 00 and let P be a linear operator from LPi(p) to L% (p) with ||Pllp,—q <
00, i =1, 2. Then for any r € (0,1)and py, qo satisfying
1 T 1—r 1 T 1—r

_|_

bo b1 p2’ q0 q1 q2

i

we have
1Pllpo—go < 1Pl — g0 I Pllps”

p2—q2°

(2) Stein’s interpolation theorem Let p;, q; and r be as above. Let S :=
{z € C: Rez € [0,1]} and A, a linear operator from LP'(u)()LP?(p) to
LU (p)J L2 (p) for each z € S. Assume that for any f € LP*(u) () LP?(n)
and g € LM (1) ﬂLp5 (), where pl is the conjugate number to p;,i = 1,2, the
function (A.f,g) is uniformly bounded and continuous on S and analytic in
S. If for any f € LM (u) N LP*(1) and y € R one has [|Aizfllgy < M| f]lp,
and HAl-l-iny(n < M2Hpr2; then

1A fllgy < MMy ™" || fllpos  F € LP () VL2 (1),

Assume that P; is the semigroup of a self-adjoint operator L on L?(u).

#L is analytic in L?(u) and hence

Then for any t > 0, the operator A, := e
the above Stein’s interpolation theorem works as follows: if || P||2—., < oo for
some p > 2 and ¢ > 0, then || Prtlla—py < [P35, p(r) :== 2p/(2r+p(1—1)).

Finally, we introduce the following result concerning the weak* compact-

ness for compact sets on a Banach space.

Theorem 0.3.14(Bourbaki)  The unit ball of the dual space B’ of a separable
Banach space B is compact and metrizable with respect to the topology o(B',B).
Consequently, for any p € (1,00] and any bounded sequence {f,} C LP(u),
there exists f € LP(u) and a subsequence { fn/} such that u(fng) — p(fg) for
any g € L), where ¢ > 1 satisfies g1 +p~1 = 1.

Proof.  The first assertion is well-known so that the second follows imme-
diately as soon as L7(u) is separable. If L%(u) is not separable, let us con-
sider the sub-o-field € := o(f, : n > 1). Then L%(u|¢) is separable for
any ¢ > 1. Thus, there exists f € L%(uly) C L7(u) and a subsequence
{fw} such that p(fng) — wp(fg) for any g € L9(u|g). Therefore, for any
g € L'(p), letting ¢’ := u(g|%) be the conditional expectation given ¢, we

obtain p(fug) = u(fug) — n(fg') = n(fg). O
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0.4 Riemannian geometry

Let M be a Hausdorff topological space with a countable basis of open sets.
For each open set U C M, if ¢ : U — R? is one-to-one and o(U) is open, then
(U, ) is called a coordinate neighborhood on M. A d-dimensional differential
structure on M is a family % := {(Ua, ¢a)} of coordinate neighborhoods such
that

(1) Uy Ua D M,

(ii) For any a, (3, ¢q © (pgl : 3(UsMNUa)—9a(Ua (N Ug) is C*°-smooth,
i.e. (Ua, o) and (Ug, pg) are C*°-compatible,

(iii) If a coordinate neighborhood (U, ¢) is C*°-compatible with each (U,,
Vo) In %, then (U,p) € % .

If M is equipped with a differential structure, then it is called a d-
dimensional differential manifold, and each (U,p) € % is called a local
(coordinate) chart.

A function f : M—R is called CP-smooth, if for any (U,¢) € % so is
fop™: pU)—R. Let CP(M) denote the set of all CP-smooth functions
on M, and C{(M) the set of such functions with compact supports. Given
x € M, let C*°(z) be the set of C*°-functions defined in a neighborhood of z.

Definition 0.4.1 Let M be a differential manifold. The tangent space T, M
at a point x € M is the set of all mappings X : C°°(x)—R satisfying

(i) X(c1f +cag9) = an X f + 2 Xg, f, g€ C®(x), c1, ca € RY

(i) X(fg) = (Xf)glx) + f()Xg, [, g€ C®(x).

Obviously, T,, M is a vector space by the convention:

(X+Y)f =Xf+Yf, (cX)f:=cXf), ceR, feC®a).

Let z € U with (U,p) € %, then for any vector Z at ¢(x) on R? one may
define ¢*Z € T, M by

(" 2)f=Z(fop™),  feC™x)

0 _ 9
8561' = auﬁ

1 <i<d For any X € T, M one has X = ¢*p, X, where ¢, X is a vector at

o(z) satisfying

Let (uy,--- ,uq) be the Euclidean coordinate on ¢(U), and let

(pX)g:=X(gop),  ge&Cp(x)).

Then
d

d
) . o\ 9. 0
X = (Ctor X, gt ) = S e e

i=1
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0
Therefore, Do is a basis of T, M.
i
Now, let TM := |J T,M, which is called the vector bundle on M. A
zeM
vector field on M is a mapping

X:M—TM, X,eT,M, z€M.

Let I'(TM) be the set of all vector fields on M. A vector field X is called
CP-smooth if in any local chart there exist CP-smooth functions fi,---, fq
such that

9
XzEfiaxi.

Let I'P(T'M) denote the set of all CP-vector fields.

Definition 0.4.2 Let M be a differential manifold. A mapping V : TM x
I''Y(TM) — TM is called a connection on M, if it is bilinear and VY :=
V(X,Y) has the following properties:

() If X €eT,M and Y € I'(TM), then VxY € T, M;

(ii) For any f € CY(M), Vx(fY) = (Xf)Ye + f(2)VxY, X € T, M, x €
M, Y € I''(TM).

Definition 0.4.3 Let M be a differential manifold. For each =z € M,
let g, be an inner product on the vector space T,M. If for any local chart
(U,p) and any X,Y € I'*(TM), ¢.(Xg,Yz) is C*®-smooth in z, then g is
called a Riemannian metric on M. A differential manifold equipped with a
Riemannian metric is called a Riemannian manifold.

It is clear that under a local chart (U, ) a Riemannian metric has the
representation

o 0
=\ — 4. 1<, j<d,
g(axi’ &Bj) 915 (%), hisd

so that g;; € C* and (g;;(x)) is strictly positive definite at each € U.

Moreover, the Riemannian metric determines a unique measure such that for
any local chart (U, ¢),

vol(A) = / Vdet goo=1(u)du, AcU.
w(A4)

We call this measure the volume measure of M and simply denote it by dz.
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Theorem 0.4.1 (Levi-Civita) If M is a Riemannian manifold, then there
exists a unique connection V (called Levi-Civita connection) satisfying

X(Y,Z) = (VxY,Z)+ (Y,VxZ), VxY=VyX+[X,Y]

for all X,Y,Z € I''(TM), where {,) denotes the inner product under the
Riemannian metric and [X,Y] = XY — Y X.

Throughout the book, we only use the Levi-Civita connection. It is useful
to note that [X,Y] is a vector field for any X,Y € I''(TM). A mapping
v : [o, B]—M is called a CP-curve on M if it is continuous and for any local
chart (U, ), p o : [a, B]N Y (U)—R? is CP-smooth. For a Cl-curve vy, we
may define the tangent vector along v by

Gof = ST00, FeC¥().

Definition 0.4.4 (1) Let 7y : [, 3]—=M be a C'-curve on M. A vector field
X is said to be constant (or parallel) along v if V5, X =0 for ¢ € [a, §]. Given
V € T, M, there exists a unique constant vector field X along ~ satisfying
X, = V. We call this vector field the parallel transportation of V' along v. A
C?-curve v is called geodesic if Vv =0.

(2) For any z € M and any X € T,M, X # 0, there exists a unique
geodesic 7 : [0,00)—M such that 79 = x and 4y = X. We denote vy :=
exp,(tX) and call exp, : T, M— M the exponential map at x. By convention
we set exp, (0) = .

For any x # y, one may define the Riemannian distance between = and y
by

1
p(x,y) :—inf{/ [¥s|ds : v : [0,1]—=M is a C'-curve such that
0

Y = and’n—y},

where |X| = (X, X)V/2 := ¢(X,X)Y2. Tt is classical that p(x,y) can be
reached by a geodesic. On the other hand, however, geodesics linking two
points may be not unique. Thus, the one with length p(x,y) is called the
minimal geodesic.

In many cases, the minimal geodesic is still not unique. For instance, for
the unit sphere S?, each half circle linking the highest and the lowest points is
a minimal geodesic. This fact leads to the following notion of cut-locus.

Definition 0.4.5 Letz € M. Forany X € S; :={X € T, M : |X]| = 1}, let
r(X) :=sup{t > 0: p(x,exp,(tX)) =t}.
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If r(X) < oo then we call exp,(r(X)X) a cut-point of z. The set
cut(z) := {exp,(r(X)X) : X € S, r(X) < oo}
is called the cut-locus of the point x. Moreover, the quantity
iy = inf{r(X): X € S;}

is called the injectivity radius of x. Finally, we call ip; := infpcps i, the
injectivity radius of M.
The following result summarizes some property of the cut-locus.

Theorem 0.4.2 (1) cut(x) is closed and has volume zero.
(2) p(x,-) is C*®-smooth on M \ (z|Jcut(x)).
(3) iy > 0 for any x € M and the function i : M — (0,00] is continuous.
(4) The set Dy, := exp, 1(M \ cut(x)) is starlike in T, M and

exp, : Dy—exp,(Dy)

is a diffeomorphism. Consequently, if y ¢ cut(z) then the minimal geodesic
linking x and y is unique.
We now introduce the curvature on M. For any X,Y,Z € I'*(TM), let

R(X,Y)Z :=VyVxZ -VxVyZ —Vxy|Z.

For any X,,Y,, Z, € T, M, let X,Y, Z be their smooth extensions respectively.
Then the value of Z(X,Y)Z at point x is independent of the choice of ex-
tensions and hence, Z is a well-defined tensor which is called the curvature
tensor of the connection V.

The curvature tensor satisfies the following identities:

RX,Y)Z +RY,X)Z =0, (0.4.1)
RX,Y)Z +R(Z,X)Y +R(Y,Z)X =0, (0.4.2)
(B(X,Y)Z, V)= (R(Z,V)X,Y) = —(R(X,Y)V, Z). (0.4.3)

Definition 0.4.6 (1) For X, Y € T, M, the quantity

(B(X,Y)X,Y)
Sect(X,Y) := | X2|Y]2 — (X,Y)2

is called the sectional curvature of the plane spanned by X and Y. If X is
parallel to Y then we set Sect(X,Y) = 0.
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(2) Let {W;}%_, be an orthonormal basis on T, M. The quantity

d
Ric(X,Y) := Y (Z(X,W;)Y, W)
i=1
is independent of the choice of {W;} and Ric is called the Ricci curvature
tensor.

(3) Let v be a geodesic. A smooth vector field J is called a Jacobi field
along ~ if

ViV d = =%y, J)7.
This equation is called the Jacobi equation.

Since the Jacobi equation is a second order ordinary equation, given X,Y &
T, M, there exists a Jacobi field along v such that Jy = X, Vs, Jili—o = Y.
Moreover, let 7 : [0,t]—=M be a geodesic, for any X € T, M and Y € T,, M,
there exists a Jacobi field J along ~ satisfying Jy = X and J; = Y. Concerning
the uniqueness of Jacobi fields, we introduce the notion of conjugate points.

Definition 0.4.7 Let x € M, a point y € M is called a conjugate point of
x, if there exists a nontrivial Jacobi field J along a minimal geodesic linking
z and y such that J vanishes at x and y.

Proposition 0.4.3 cut(x) consists of conjugate points of x and points having
more than one minimal geodesics to x.

To make analysis on Riemannian manifolds, let us introduce some fun-
damental operators including the divergence, the gradient and the Laplace
operators.

Definition 0.4.8 Let X € I''(TM), we define its divergence by

d
(divX)(2) == (VX (2) = 3 (Vi X, Wi,
i=1
where {W;} is an orthonormal basis of T, M. It is easy to check that div.X
is independent of the choice of {W;}. For f € CY(M), define its gradient
VfeI(T'M) by
(Vf,X):=Xf, X eIl'(TM).

Finally, the Laplace operator is defined by A := divV which well acts on
C?-functions.

For any f € C*(M), define Hess¢(X,Y) := (VxVf,Y)for X,Y € T,M,z €
M. We call Hessy the Hessian tensor of f. It is clear that the Hessian tensor
is symmetric. The following Bochner-Weitzenbock formula connects the Ricci
curvature with the Laplace and gardient operators and the Hessian tensor.
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Proposition 0.4.4 (Bochner-Weitzenbock formula) — For any smooth function

f one has
1 .
SAIV? = (VAF, V) = [Hessy|[frs + Rie(V £, V),
d d
where |Hessy||%g(z) := > Hesss(E;, E;)? = Z:(EZE]J”(QIC))2 for an or-
4,j=1 ij=1

thonormal basis {E;} of T, M such that VE; = 0 at x for all i, which is
called a normal frame at x.

Now, we introduce some useful integral formulae for the above operators.
For given f € C;°(M), by Sard’s theorem the set of critical values in f(M)
has Lebesgue measure zero. In other words, {f =t} is a (d — 1)-dimensional
submanifold of M for a.e. t € f(M). Let A denote the volume measure on a
(d — 1)-dimensional submanifold of M with the induced metric.

Theorem 0.4.5(Coarea formula) For any f € Cg°(M) and any h € L(dz),

/h|Vf|dx:/ dt/ hdA.
M 0 {/=t}

In particular, if dp := hdx is a finite measure and let duy := hd A then
W(V1) = [t = e

Theorem 0.4.6 (Green formula or integration by parts formula) (1) If
X € I''(TM) with compact support, then

/ divX(z)dz = 0.
M
@) If f,g € C2(M), then
[ tsp@as= [ anws =~ [ (94.v4 @

(3) Let X € I'(TM) and D C M a smooth open domain, i.e. an open
domain with boundary a (d — 1)-dimensional differential manifold. Then

/D (divX)(z)de = / (X, N)dA,

oD
where N is the outward unit normal vector field on 0D.
(4) For a smooth open domain D,

/ (fAg+ (Vf,Vg))(x)da = / f(Ng)dA,  feCl(D).ge C3(D).
D oD





