应用物理学丛书

正电子物理及其应用

郁伟中 编著

北京

内容简介

本书全面介绍正电子湮没技术和谱学,将核技术用于研究固体、液体 中与缺陷和相变有关的物理化学性质的测试手段。

本书第一章简要介绍正电子湮没技术的四种实验方法,第二章介绍正 电子湮没谱学的基本原理,第三章和第十章详细介绍了常规正电子方法和 慢正电子方法,第十一章介绍了正电子湮没在大学物理教学实验中的应 用,其余的第四到第九章介绍了正电子湮没在金属、非晶态和纳米晶、半 导体、离子晶体、聚合物、液晶等方面的应用。

本书可供材料相关专业的科技人员和大专院校师生参考。

图书在版编目 (CIP) 数据

正电子物理及其应用/郁伟中编著.—北京:科学出版社, 2003.1

(应用物理学丛书/吴自勤,杨国桢主编)

ISBN 7-03-010307-6

Ⅰ. 正…
 Ⅱ. 郁…
 Ⅲ. 正电子-电子物理学
 Ⅳ.0572.32
 中国版本图书馆 CIP 数据核字 (2002) 第 018817 号

责任编辑:李义发 张邦固/责任校对:柏连海 责任印制:安春生/封面设计:王 浩

斜学出版社出版

北京东黄城根北街 16 号 邮政编码: 100717 http://www.sciencep.com

印刷

科学出版社发行 各地新华书店经销

*

2003年1月第一版 开本: 850×1168 1/32 2003年1月第一次印刷 印张: 16 印数: 1-2 000 字数: 411 000

定价: 38.00 元

(如有印装质量问题,我社负责调换〈新欣〉)

《应用物理学丛书》编委会

主 编 吴自勤 杨国桢

编 委 (按姓氏笔画排序)

王 琛 王之江 王业宁 叶朝辉 华中一 肖定全 张泰永 冼鼎昌 姜承烈 莫 党 阎守胜 章 综

《应用物理学丛书》出版说明

1978年夏在庐山召开的中国物理学会年会("十年动乱"结束后的全国物理学界第一次大型学术会议)上,部分与会专家与学者经过充分酝酿和热烈讨论后一致认为,为了迎接科学春天的到来和追赶世界先进科学技术水平,有必要编辑出版一套《实验物理学丛书》,并组成以钱临照院士为主编,王淦昌等5位院士为副主编,王之江、王业宁等26位院士或专家为编委的《实验物理学从书》编委会。

20 年来,这套丛书在钱临照院士的主持下,通过编委们的 积极工作(有的编委还亲自撰稿),先后出版了《实验的数据处 理》、《X 射线衍射貌相学》、《粒子与固体相互作用物理学》、《压 电与铁电材料的测量》、《电介质的测量》、《物理技术在考古学中 的应用》及《材料科学中的介电谱技术》等 20 部实验物理学著 作。这些著作都是实验、科研和教学的系统总结,出版后受到读 者的欢迎和好评,有不少被评为国家级、部级和院校级的优秀科 技图书,如《实验的数据处理》一书获第一届全国优秀科技图书 一等奖。这套丛书的陆续出版,在社会上引起较大影响,在科 研、教学、经济建设和国防建设中发挥了积极的作用。

改革开放以来,我国在各个方面发生了翻天覆地的变化,经 济体制由计划经济逐步转向社会主义市场经济,科学技术和教育 也得到了空前的发展。为了适应社会主义市场经济的需要和满足 社会的需求,我们决定对原丛书的出版宗旨、选题方向做相应的 调整,重新组建编委会,并将原丛书更名为"应用物理学丛书", 使新丛书能在"科教兴国"和将科学技术转化为生产力的伟大实 践中发挥更大的作用。

• i •

《应用物理学丛书》的出版宗旨和选题方向如下:

1. 密切联系当前科研、教学和生产的实验需要,介绍应用 物理学各领域的基本原理、实验方法、仪器设备及其在相关领域 中的应用,并兼顾有关交叉学科。

2. 反映国内外最新的实验研究与技术水平和发展方向,并 注重实用性。

3. 以大专院校师生以及科研单位、国防部门、工矿企业的 科研人员为对象,理论与实验紧密联系。

这套丛书将按照"精而准、系统化"的原则,力求保持并发 展原《实验物理学丛书》已形成的风格和特色,多出书、出好 书。

需要强调的是,《应用物理学丛书》将优先出版那些有助于 将科学技术转化为生产力以及对社会和国民经济建设有重大作用 和应用前景的著作。

我们坚信,在编委们的共同努力下,在广大科研和教学人员 的积极参与和大力支持下,《应用物理学丛书》的出版将对我国 科学技术和教育事业的持续发展发挥积极的作用!

《应用物理学丛书》编委会

B	큰
H	<u>>K</u>

第一章 正电子湮没技术基本原理介绍	••• (1)
§1.1 前言······	••• ((1)
§1.2 正电子和正电子湮没······	••• (3)
§1.3 正电子湮没技术的四种实验方法·······	••• (4)
1.3.1 正电子湮没寿命测量	••• (4)
 1.3.2 2γ 湮没角关联测量 ······ 	••• (8)
1.3.3 湮没γ射线多普勒增宽能谱测量	••• (12)
1.3.4 慢正电子谱测量	••• (15)
参考文献	••• (17)
第二章 正电子湮没谱学基础	••• (18)
§ 2.1 正电子是电子的反粒子 ······	••• (18)
2.1.1 狄拉克理论	••• (18)
2.1.2 安德森发现正电子	••• (21)
2.1.3 正电子的性质 •••••••	••• (24)
§2.2 正电子湮没······	••• (25)
2.2.1 正电子湮没截面	••• (25)
2.2.2 狄拉克湮没率公式	••• (27)
2.2.3 正电子在金属中的湮没率	••• (27)
2.2.4 关联效应	••• (29)
2.2.5 增强因子 ••••••	••• (31)
2.2.6 正电子和 d 电子湮没 ······	••• (33)
2.2.7 理论计算中的增强因子	••• (35)
§2.3 均匀介质中的正电子动力学······	••• (38)
2.3.1 正电子的热化	••• (38)
2.3.2 正电子的注入深度剖面	••• (41)
		iii •	

布的测量	•••••	••••	(43)
目体中的扩散	•••••••••	••••	(46)
已子运动		••••	(48)
的微观分布	•••••••••	••••	(49)
的正电子	动力学	••••	(50)
		••••	(50)
已子密度的变	化和简单图像	·····	(51)
a捕获正电子	••••	••••	(52)
发展史 …		••••	(53)
•••••		••••	(54)
性质		••••	(55)
三则		•••••	(58)
]湮没率 …		•••••	(59)
D撞击(pick-	off) 湮没 …	••••	(60)
I径迹模型		••••	(61)
莫型和早期应	用••••••	••••	(67)
日体中微空洞	的计算	••••	(71)
子偶素的测	量	••••	(73)
∥量 ・・・・・		••••	(73)
•••••		••••	(76)
•••••		••••	(80)
技术		••••	(86)
•••••		••••	(86)
选择		••••	(87)
备		••••	(90)
导命谱仪…		••••	(93)
仪		••••	(93)
的探测器		••••	(97)
育的确定 …		••••	(102)
]分辨率的测	定	••••	(103)
	个个个子的一个新的一位更的对位这时不是一个小人,我们是我的人们,我们就是我们的人们,我们就是我们的人们,我们就是我们的人们,我们就是一个人们的人们,我们就是一个人们的人们。我们就是我们的人们,我们就是 人名英格兰人 化乙基乙酮 化乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基	↑布的测量 ●本的测量 ●本的扩散 ●子运动 ●子运动 ●的正电子动力学····· ●子密度的变化和简单图像 每新获正电子 ●方子密度电子 ●方子密度电子 ●方子密度的变化和简单图像 ●有获正电子 ●方子密度电子 ●方子密度电子 ●方子密度电子 ●方子密度电子 ●方子密度电子 ●方子密度电子 ●方子密度的变化和简单图像 ●子密度电子 ●一子密度的变化和简单图像 ●子密度电子 ●一子密度的变化和简单图像 ●一子密度也子 ●一子。 ●一子。 ● 章音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音	▶布的测量 ●有的测量 ●相体中的扩散 ●日本可引力学 ●日本可力学	↑布的测量 (14年的扩散 (14年中的扩散 (14年中的扩散 (14年中的扩散 (14年中的扩散 (14年下)))) ○日本的微观分布 (14年下)) ○日本一方之下电子动力学·····(14年下)) ○日本一方之下电子动力学·····(14年下)) ○日本一方之下电子(14年下)) ○日本一方之下中(14年下)) ○日本一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	本 前 削量 (43 引体中的扩散 (46 四子运动 (48 生 的 微观分布 (49 中的正电子动力学 (50 四子密度的变化和简单图像 (51 雪捕获正电子 (52 均发展史 (53 一 (55 三 则 (60 四径迹模型 (61 真型和早期应用 (67 司体中微空洞的计算 (71 子偶素的测量 (73 则量 (73 则量 (73 则量 (73 一 (76 技术 (86 的选择 (87 马备 (90 导命谱仪 (93 雪的 猴测器 (97 引) 一 (102 引) 辨率的测定 (102) 四子 (102<

:	3.2.5	寿命谱的测定	(106)
:	3.2.6	有缺陷样品的寿命谱	(107)
:	3.2.7	寿命谱的分析程序	(107)
:	3.2.8	寿命谱质量的分析	(109)
:	3.2.9	源修正	(111)
:	3.2.10	绝对空位浓度求导	(112)
§3.3	3 正国	电子湮没多普勒增宽谱仪	(113)
:	3.3.1	多普勒增宽谱仪中主要器件	(113)
:	3.3.2	多普勒增宽谱的数据处理	(114)
:	3.3.3	多普勒增宽谱分辨函数的改善	(117)
:	3.3.4	多普勒增宽谱测量的精度	(120)
÷	3.3.5	复合的湮没谱系统	(120)
§3.4	4 角う	关联方法和金属中电子动量密度和费米	
	面・		(124)
ŝ	3.4.1	前言及早期的历史	(124)
:	3.4.2	实验技术	(126)
:	3.4.3	近期的发展 •••••	(133)
参考	文献・		(134)
四章	热平衡	缺陷	(138)
§4.	1 前青	<u> </u>	(138)
§4.2	2 热 ^工	平衡状态	(139)
4	4.2.1	点缺陷浓度与温度的关系	(139)
4	4.2.2	点缺陷浓度和压强的关系	(142)
4	4.2.3	形成焓和形成焓的温度关系	(143)
L	4.2.4	杂质的影响 •••••	(143)
§4.3	3 研究	究热平衡缺陷所用的实验技术	(144)
Z	4.3.1	电阻率	(144)
2	4.3.2	量热法测量 •••••	(145)
2	4.3.3	热膨胀测量 •••••	(145)
2	4.3.4	正电子湮没技术测量	(147)
			• _V •

第

4.3.5	小结	(154)
§4.4 预空	至位效应	(157)
4.4.1	预空位效应的发现	(157)
4.4.2	预空位效应的各向异性	(159)
4.4.3	产生预空位效应的原因	(160)
§4.5 低浓	R度合金中的空位形成能······	(165)
§4.6 二元	后金中的空位形成能	(167)
4.6.1	微分热膨胀激光测定法	(167)
4.6.2	正电子测量结果	(167)
§4.7 特殊	金属的高温特性	(174)
参考文献 …		(175)
第五章 金属中	的非平衡缺陷	(179)
§5.1 前言		(179)
§5.2 淬火	〈实验	(181)
5.2.1	铝的淬火实验	(181)
5.2.2	合金的淬火实验	(184)
§5.3 形变	至实验	(187)
5.3.1	室温下单晶的形变	(190)
5.3.2	低温下形变 ••••••	(191)
5.3.3	多晶的形变 ••••••	(193)
5.3.4	形变后时效对正电子参数的影响	(194)
5.3.5	杂质对形变的影响	(195)
5.3.6	形变中空位浓度和位错密度的估算	(196)
§5.4 疲羹	存缺陷	(197)
§5.5 金庫	高和合金的辐照和离子注入缺陷	(200)
5.5.1	退火阶段的电阻率研究	(202)
5.5.2	正电子研究辐照效应 ••••••	(203)
5.5.3	正电子研究合金的辐照效应 ••••••	(211)
5.5.4	正电子研究反应堆压力容器材料的辐照效应			
		(214)

5.5.5	离子注入和重离子辐照后的正电子研究	(217)
§5.6 氢	脆及金属氢化物的研究	(217)
5.6.1	氢脆研究	(217)
5.6.2	金属氢化物的研究	(223)
5.6.3	反应堆材料中气泡的研究	(224)
5.6.4	氢-钯系统和氘-钯系统中的研究	(224)
§5.7 固	态相变	(226)
5.7.1	bce-fcc转变 ······	(228)
5.7.2	马氏体相变	(229)
5.7.3	GP ⊠ ·····	(231)
5.7.4	有序无序转变	(232)
§5.8 固	态液态相变	(234)
§5.9 金	属研究中的另外几个例子	(236)
5.9.1	缺位固溶体	(236)
5.9.2	高温结构金属中空位的回复	(237)
5.9.3	合金中原子的偏聚	(238)
5.9.4	镀铁层的结构研究	(238)
5.9.5	蠕变	(239)
5.9.6	形状记忆合金	(240)
参考文献		(241)
第六章 正电子	F湮没在非晶态和纳米晶中的应用	(248)
§6.1 前	言	(248)
6.1.1	非晶态合金的结构	(248)
6.1.2	非晶态合金的制备	(249)
6.1.3	早期工作后的启迪	(250)
§6.2 缺	陷研究	(251)
6.2.1	Bernal 空位 ·····	(251)
6.2.2	非晶态的形变和辐照研究	(253)
§6.3 结	构弛豫研究	(254)
§6.4 晶	化过程	(256)

§6.5 电	子结构	(259)
§6.6 结	晶度	(260)
§6.7 微	晶	(260)
§6.8 正	电子湮没技术在纳米晶体中的应用	(262)
6.8.1	纳米晶体	(262)
6.8.2	从非晶态制备纳米晶体	(265)
§6.9 碳	60 (C ₆₀)	(266)
参考文献		(269)
第七章 正电子	≤湮没在半导体中的应用	(273)
§7.1 半	导体的性质	(273)
§7.2 正	电子湮没技术测量半导体的体效应	(274)
7.2.1	半导体体性质的正电子方法研究	(275)
7.2.2	生产的硅棒和其它半导体体材中缺陷分布	(278)
7.2.3	生产温度对缺陷的影响	(280)
7.2.4	形变和压力对缺陷的影响	(280)
7.2.5	晶体缺陷和掺杂效应	(280)
7.2.6	硅氢键的性质 ••••••	(283)
7.2.7	硅的激光退火过程	(283)
7.2.8	缺陷的转换 •••••	(283)
§7.3 半	导体的辐照效应	(284)
7.3.1	电子辐照	(284)
7.3.2	质子辐照 ••••••	(285)
7.3.3	中子辐照 ••••••	(285)
7.3.4	硅的嬗变	(287)
§7.4 离	子注入和产生的损伤	(289)
7.4.1	B注入	(289)
7.4.2	P注入	(290)
7.4.3	Si 注入及 Si 的自注入	(291)
7.4.4	H注入	(292)
7.4.5	He 注入	(292)

7.4.6	Kr注入 ·····	(294)
7.4.7	Ar 注入	(295)
7.4.8	0注入	(295)
7.4.9	F 注入	(296)
7.4.10	N 注入	(297)
7.4.11	As 注入	(297)
7.4.12	Ge 注入	(298)
7.4.13	多种离子综合注入	(298)
§7.5 非	晶态 Si 的正电子湮没研究	(299)
7.5.1	非晶硅的缺陷	(299)
7.5.2	a-Si:H中的电子偶素 ······	(300)
7.5.3	制备工艺对非晶硅的影响	(301)
7.5.4	晶化和非晶化	(301)
§7.6 叠)	层膜中的正电子和慢正电子束研究	(301)
§7.7 Si	D2-Si界面的正电子湮没研究	(305)
7.7.1	界面缺陷的研究	(305)
7.7.2	各种氧化生长过程的正电子湮没研究	(308)
7.7.3	微空洞、退火和氢钝化	(309)
7.7.4	辐照损伤······	(310)
7.7.5	Si ₃ N ₄ -Si 中缺陷 ······	(312)
7.7.6	金属-氧化物-半导体 (MOS) 的结果	(313)
7.7.7	正电子界面捕获位的模型	(318)
7.7.8	正电子瞬态谱 ••••••	(319)
7.7.9	MOS电容中的电场 ······	(320)
§7.8 其'	它半导体中的正电子湮没研究	(321)
7.8.1	Ge 的正电子研究	(321)
7.8.2	InP的正电子研究 ······	(322)
7.8.3	GaAs 的正电子研究 ······	(322)
7.8.4	CdTe和 HgCdTe中的正电子湮没 ······	(325)
7.8.5	CuInSe2	(327)

)
)
影响 (329)
•••••• (330)
•••••• (331)
)
(332)
(340)
(340)
没对的基础理论	
•••••• (341)
(341)
类 (342)
(343)
(344)
)
(347)
(348)
(349)
(350)
(350)
(351)
验结果 ········ (351)
(351)
石英 (356)
(358)
(359)
(360)
(360)
(365)
	(328) (329) 影响 (329) 影响 (329) (330) (331) (331) (332) (332) (332) (332) (332) (332) (332) (332) (332) (340) (340) (340) (340) (341) (341) (341) (342) (342) (343) (343) (344) (344) (344) (344) (344) (345) (347) (348) (347) (348) (349) (350) (350) (351) (351) 验结果 (351) 石英 (356) (357) (356) (356) (356) (357) (356) (360) (360) (360) (360)

§8.6 正电子湮没在超导中的应用 ······	(365)
8.6.1 寻找 e ⁺ 参数和超导温度的关系•••••••	(365)
8.6.2 寻找 e ⁺ 参数和缺陷的关系 •••••••••••	(368)
8.6.3 寻找 e^+ 参数和相结构的变化的关系 ········	(370)
8.6.4 改变超导体中某些元素的含量引起 e^+ 参数的			
变化	(372)
8.6.5 寻找超导体在热处理前后氧含量的变化	(377)
8.6.6 超导体 e^{-} 结构和费米面的测量······	(378)
§8.7 正电子湮没在陶瓷中的应用······	(378)
§8.8 正电子湮没在沸石中的应用······	(381)
参考文献	(384)
第九章 正电子湮没在聚合物中的应用	(389)
§9.1 聚合物的性质 ······	(389)
§9.2 用正电子湮没研究聚合物······	(391)
9.2.1 正电子湮没在聚合物和分子固体中主要特点			
	(392)
9.2.2 正电子湮没谱	(393)
9.2.3 电子偶素形成的自由体积模型	(394)
9.2.4 刚性分子固体中的正电子湮没	(395)
§9.3 相变······	(395)
9.3.1 固-固相变	(395)
9.3.2 固-液相变的分子材料 ······	(397)
§9.4 聚合物的玻璃态转变······	(397)
9.4.1 齐聚的苯乙烯和正三联苯	(397)
9.4.2 热塑性聚合物系统	(400)
9.4.3 共聚物	(406)
§ 9.5 聚合物的物理老化······	(406)
89.6 研究聚合物中的缺陷······	(407)
9.6.1 拉伸	(407)
9.6.2 压力的影响	(408)

• xi •

9.6.3 γ辐照对聚合物微观结构的影响 ······	(410)
9.6.4 电场的影响 ••••••	(410)
9.6.5 自由体积的各向异性	(411)
§9.7 聚合物化学成分和所含气体对正电子测量的	
影响·····	(412)
9.7.1 化学成分的影响	(412)
9.7.2 气体渗透的影响	(413)
§9.8 热固系统 环氧树脂······	(414)
§9.9 正电子湮没方法在液晶相变研究中的应用	
	(416)
§9.10 结论 ······	(418)
参考文献	(418)
第十章 慢正电子湮没谱学	(423)
§10.1 前言 ······	(423)
§10.2 慢正电子的获得 ······	(424)
10.2.1 慢正电子谱仪中快正电子的获得	(424)
10.2.2 如何降低正电子的能量	(426)
10.2.3 慢化体和它的效率	(427)
10.2.4 慢化体的研制	(428)
10.2.5 加电场慢化体	(430)
10.2.6 慢化体的几何结构	(431)
10.2.7 二次慢化和亮度增强	(431)
§10.3 慢正电子束的输运和测量 ······	(434)
10.3.1 慢正电子束的输运	(434)
10.3.2 慢正电子束的探测	(436)
§10.4 慢正电子束用于散射研究 ······	(437)
10.4.1 慢正电子和固体相互作用的初级阶段研究——	
正电子和固体的散射	(437)
10.4.2 慢正电子研究固体表面势	(438)
10.4.3 慢正电子在金属中的慢化	(439)
• xii •	

10.4.4	慢正电子在半导体和离子固体中的慢化	(440)
10.4.5	慢正电子在绝缘体中的慢化	(441)
10.4.6	慢正电子注入剖面 ••••••	(441)
§10.5 慢	正电子束研究中的扩散过程	(444)
10.5.1	扩散	(444)
10.5.2	金属中的慢正电子扩散理论	(447)
10.5.3	表面扩散理论	(449)
10.5.4	金属中的正电子 实验观察	(450)
10.5.5	半导体中正电子的扩散	(450)
10.5.6	Ps 扩散	(452)
§10.6 表	面研究	(452)
10.6.1	功函数的研究	(453)
10.6.2	正电子功函数的测量 ••••••	(455)
10.6.3	表面的重发射正电子 ••••••	(459)
§10.7 表	面 Ps 的形成和发射 ······	(461)
10.7.1	Ps发射的依据 ······	(461)
10.7.2	eV 量级能量(高能)Ps 的形成	(462)
10.7.3	热 Ps 的形成 ••••••	(463)
10.7.4	Ps从绝缘体和分子晶体中发射	(465)
§10.8 慢	正电子束应用于缺陷研究	(465)
10.8.1	体缺陷研究	(466)
10.8.2	表面缺陷	(467)
10.8.3	界面和多层结构	(468)
10.8.4	缺陷的深度剖面	(470)
§10.9 慢	正电子束部分的说明	(474)
参考文献 •		(475)
第十一章 正电	子湮没应用于高级物理实验	(481)
§11.1 正	电子是大学物理的教学实验中很好的题	
目		(481)
§11.2 正	电子寿命谱用于诊断单晶,微晶和非晶	

的结构	(482)
§11.3 多普勒增宽谱测量费米能级 ·······	(482)
§11.4 γ光子速度的测定 ······	(483)
11.4.1 γ光子的速度······	(483)
11.4.2 利用正电子湮没的测量原理	(483)
§11.5 康普顿剖面的测定 ······	(486)
11.5.1 测量原理	(486)
§11.6 原子激子的验证 ······	(487)
参考文献	(489)

第一章 正电子湮没技术基本原理介绍[1~3]

§1.1 前 言

本章是相对独立的一章,我们希望用简要和通俗的语言概括 正电子湮没方法,以便使广大的材料科学工作者和初次接触正电 子的读者不用花很多时间,在阅读了本章以后能对正电子湮没技 术的基本原理和应用范围有一个大体的了解,也有利于读者在阅 读后面的文章时能更好地理解。

人们在 20 世纪 30 年代发现了正电子(以下简称为 e⁺)^{*},40 年代起把它应用于固体物理研究,60 年代末又在材料科学中使它 得到了广泛应用,80 年代又把它应用于表面和表层研究。

 e^+ 湮没在物理学中常称为 e^+ 湮没谱学,在材料科学中常称为 e^+ 湮没技术,简称为 PAT(positron annihilation technique),是一门 把核物理和核技术应用于固体物理和材料科学研究的新技术,还 可以应用于化学和生物等学科。本章简述 PAT 的四种实验技术 和它们在材料科学中的应用。第二章起叙述在物理领域内的 e^+ 湮没谱学。

PAT 包括多种实验技术,其中早期最常用的有三种,即 e^+ 湮没寿命谱、2γ 湮没角关联和 e^+ 湮没 γ 射线多普勒能谱(其装置分别简称为寿命谱仪,角关联装置和多普勒谱仪)。80 年代起又发展了应用于表面研究的慢 e^+ 束技术。此外又有许多新的方法如 e^+ 年龄-动量关联谱仪、低能 e^+ 衍射谱仪、 e^+ 显微镜、 e^+ 引发俄歇 电子谱仪、医用 e^+ 层析照相(PET)等也在日益发展。

^{*} 本书为了节省篇幅,正电子用符号(e⁺)表示,电子用 e⁻表示,电子偶素用 Ps 表示。

我们先把 PAT 在固体物理和材料科学中的一些主要应用列出,也许这是大部分阅读此书的人所感兴趣的,主要应用有:

(1) PAT 可以研究金属材料的形变、疲劳、淬火、辐照、掺杂、 氢损伤等在材料中所造成的空位、位错、空位团等缺陷以及研究这 些缺陷的退火效应。

(2)研究材料中各种相变过程,如合金中的沉淀现象、马氏体 相变、非晶态材料中的晶化过程、离子固体中的相变、液晶及其它 高分子材料,聚合物中的相变等。

(3)研究固体的能带结构、费米面、空位形成能等。

(4)研究材料的表面和表层结构和缺陷。

PAT 在高能物理、化学、生物、医学、天文中的应用本书将不 予以介绍。

PAT 之所以能得到迅速的发展是由于它具有许多独特的优点:

(1) 它对样品材料的种类几乎没有什么限制,可以是固体、液体或气体,可以是金属、半导体、绝缘体或高分子材料,可以是单晶、多晶、非晶或液晶等,总之,凡是与材料的电子(以下简称为e⁻)密度及e⁻动量有关的问题,原则上都可用 PAT 来研究,但金属材料一直是 PAT 传统的研究阵地和发展得较为完善的领域。

(2) PAT 对样品的温度几乎没有限制,如可以跨越材料的熔 点或凝固点,而信息又是通过贯穿能力很强的γ射线携带出来的, 因此易于对样品作高低温的动态原位(in situ)测量,即一面升降 温一面测量,或在测量时施加电场、磁场、高气压、真空等特殊环 境。

(3) PAT 研究的是样品中原子尺度的缺陷,如晶格中缺少一 个或几个原子的缺陷,这些缺陷在电镜、X 衍射中研究颇为困难, 所以 PAT 可以和电镜、X 衍射和其它技术相辅相成,互为补充。

(4) 室温测量下的 PAT 的制样方法简便易行,仪器也不太复杂,使它容易得到推广。

§1.2 正电子和正电子湮没

 e^+ 是 e⁻的反粒子,它和 e⁻的质量相等,所带电荷电量也和 e⁻电荷相等,只是它带正电荷。e⁺和物质中 e⁻相遇时会发生湮 没现象,这时 e⁺、e⁻的质量转变为 γ 光子的能量,湮没时主要发出 两个 γ 光子,称为 2 γ 湮没或双光子湮没。

宇宙射线中可以发现 e^+ ,但实验室中所用的 e^+ 主要来自放 射性同位素(u^{22} Na,⁶⁴Cu 等)的衰变,从放射源中发射出来的 e^+ 其能量是比较高的,大约在几百千电子伏特到几兆电子伏特之间, 这种 e^+ 进入凝聚态物质后会通过多种形式损失能量,大约在 10^{-12} s量级内使其动能降至 kT量级(室温下约为 0.025eV),这 一过程称为 e^+ 的热化。热化 e^+ 在样品中随入射深度不同而分 布,具有一定形式的深度分布。能量为 MeV 量级的 e^+ 称为快 e^+ ,在固体中入射深度大致为几十至几百微米,主要研究样品内 部性质(称为体性质)。另外我们也可以通过慢化技术把 e^+ 的能 量降为 keV 量级而且可以任意调节,这种低能的 e^+ 称为慢 e^+ , 人 射深度大致为 μ m 量级,慢 e^+ 可以研究样品的表面和表层性质随 深度的变化。

热化 e⁺在晶格中自由扩散,直至与 e⁻发生湮没。晶格中空 位、位错等缺陷往往带有等效负电荷,由于库仑引力 e⁺容易被这 些缺陷捕获而停止扩散。e⁺会在缺陷中停留一些时间然后湮没, 由于缺陷处 e⁻密度一般较低,所以和无缺陷处 e⁺湮没寿命相比, 缺陷中的 e⁺寿命较长。在一定的条件下固体中的 e⁺可能和 e⁻形 成电子偶素(一种 e⁺-e⁻束缚态),简称为 Ps,Ps 的寿命一般更长。 研究 e⁺和 Ps 寿命的长短是 PAT 的手段之一。

湮没过程遵守能量和动量守恒,若湮没时 e⁺-e⁻对(简称为湮 没对)静止,即初始动量为零,当忽略湮没对很小的其它能量(如结 合能),双光子湮没时必定以严格的 180°夹角向相反方向(成共直 线)发射两个光子,每个光子的能量可由爱因斯坦公式求出:

• 3 •

 $E_0 = m_0 c^2 = 511 \text{keV}$ (1.1)

式中 m_0 是 e⁻(或 e⁺)的静止质量, c 是真空中光速, 有时也称 511keV 是 e⁻的静止能量。

若湮没对在湮没前有初始动量,发射方向将相对于共直线偏 离一个夹角,每个光子的能量也可能与 511keV 发生偏离,这两种 偏离的程度与 e⁻的动量有关,测量夹角和能量的偏离是 PAT 的 研究手段之二和之三,即分别为角关联谱和多普勒谱。第四种方 法即慢 e⁺方法,它只是使入射 e⁺的能量降低,测量仍用上面的方 法一或方法三,以方法三即多普勒测量为主,可得到 e⁺入射能量-S 参数关系曲线。

下面简单介绍 PAT 中四种实验方法。

§1.3 正电子湮没技术的四种实验方法

1.3.1 正电子湮没寿命测量

e⁺湮没寿命方法测量每个 e⁺在样品中存在的时间,对于众

图 1.1 快-快符合 e⁺湮没寿命谱仪框图

多的 e^+ 湮没事件将组成一个 e^+ 数和 e^+ 生存时间的分布图,即 e^+ 湮没寿命谱。

图 1.1 是一种最简单的 e^+ 湮没寿命谱仪框图,基本原理如下:测量每一个 e^+ 在样品中生存的时间必须要有起始和终止两个信号,起始信号表示 e^+ 进入样品的时刻,终止信号表示 e^+ 湮没的时刻。起始可以通过多种方法得到,但最常用的是依靠 e^+ 源²² Na 在放出 e^+ 的同时发射出一个能量为 1.28 MeV 的 γ 光子(其它的方法有 β^+ - γ 符合寿命谱仪和斩波器)。终止信号毫无疑问就是能

图 1.2 上图是一个典型的寿命谱,是对金属钠的测量,左侧的窄峰是仪 器的分辨率,下图相应于三种不同材料的 e⁺湮没寿命谱曲线

• 5 •

量为 0.511 MeV 的湮没 γ 光子。 γ 光子先通过探头接收,再经过 恒比甄别器对 γ 光子能量进行选择,使起始通道只接收 1.28 MeV 的 γ 光子,终止通道主要接收 0.511 MeV 的 γ 光子,两个 γ 光子之 间的时间差由时幅转换器正比地转换成一个电脉冲,该脉冲作为 一个湮没事件被多道分析器接收,符合电路甄别两个 γ 光子是否 属于同一个 e^+ 的起始和终止信号。为了保证统计精度,需记录众 多的湮没事件(如 10⁶ 个)构成一个 e^+ 寿命谱,因此测一个谱大约 化 1~3h。图 1.2 上图是一个寿命谱,具有单个寿命值,下图是对 三种不同材料测得的 e^+ 湮没寿命谱曲线示意图。

寿命谱横轴时间刻度的标定可以利用同位素源⁶⁰Co,该源在 衰变中同时发出两个 γ 光子(能量为 1.17 MeV 和 1.33 MeV),用 ⁶⁰Co源代替²²Na,在寿命谱仪上可以测得这两个光子的瞬时符合 峰,这个峰高度一半处的全宽度(简称为半高宽,用符号 FWHM 表示)即为仪器的时间分辨率(见图 1.2 上图中窄峰)。FWHM 约 为 300ps 或更小。把图 1.1 中延迟电路人为地延迟一个已知的固 定值,从峰在谱图上的位移可计算出寿命谱横轴时间刻度。

量子电动力学证明,运动速度远小于光速的热化 e^+ ,在单位 时间内发生 2 γ 湮没的概率与样品中 e^+ 所处位置上的 e^- 密度成 正比:

$$\lambda = \pi r_0^2 c n_e \tag{1.2}$$

式中 λ 为湮没率, r_0 为经典 e^- 半径, c 为光速, n_e 是 e^+ 所在处的 e^- 密度。由于上式中 π , r_0 和 c 都是常数,所以 λ 正比于 e^- 密度 n_e :

$$\lambda = A n_{\rm e} \tag{1.3}$$

其中 A 为常数,而湮没率 λ 的倒数为 e^+ 的寿命 $\tau_{:}$

$$\tau = 1/\lambda \tag{1.4}$$

因此 e^+ 寿命 τ 反比于 n_e ,就是说, e^+ 所"看见"的 e^- 密度越低,则 其寿命越长。

在介质的不同部位可能会有不同的 e⁻密度。以金属单晶为 例,在缺少一个或几个晶格离子的空位缺陷中,由于正离子的减

• 6 •

少,引起 e⁻密度的降低,从而使空位处的 e⁺寿命值大于晶格中完整点阵处的寿命值,在不同类型的缺陷中会有不同的 e⁻密度,因而会有不同的寿命值。另外,空位型缺陷通常带有等效负电荷,由于库仑引力,e⁺能够被束缚在缺陷中,我们把这种现象称为捕获现象,这时 e⁺所处的状态称为缺陷捕获态。相反,e⁺也可以在完整点阵部位中自由扩散而湮没,我们称它处于自由态。

为了从寿命谱测量结果中抽出有关 e⁺态或样品缺陷状况的 信息,人们通常采用所谓"捕获模型"来解谱,它是以求解一套联立 的速率方程为基础的,其中用得最为广泛的是二态捕获模型和三 态捕获模型,而三态捕获模型只是二态捕获模型的简单推广,因此 我们在这里只介绍二态捕获模型。

二态捕获模型假定 e^+ 在样品中可能处于两种不同的状态,第 一种是自由态,第二种是缺陷捕获态或某种其它 e^+ 束缚态,设在 任一时刻 t,处于这两种态上的 e^+ 数目分别为 n_t 和 n_d ,则下面的 方程成立:

$$\frac{\mathrm{d}\,n_{\mathrm{f}}(\,t)}{\mathrm{d}\,t} = -\,\lambda_{\mathrm{f}}\,n_{\mathrm{f}}(\,t) - \kappa n_{\mathrm{f}}(\,t) + \gamma n_{\mathrm{d}}(\,t) \qquad (1.5)$$

$$\frac{\mathrm{d}\,n_{\mathrm{d}}(\,t)}{\mathrm{d}\,t} = -\,\lambda_{\mathrm{d}}\,n_{\mathrm{d}}(\,t) - \gamma n_{\mathrm{d}}(\,t) + \kappa n_{\mathrm{f}}(\,t) \qquad (1.6)$$

式中 λ_{f} 和 λ_{d} 分别为 e^{+} 处于自由态和捕获态时的湮没率,它们的 倒数分别为 e^{+} 处于这两种状态时的寿命 τ_{f} 和 τ_{d} ,通常 $\tau_{f} < \tau_{d}$, κ 是缺陷对 e^{+} 的捕获率, $\gamma \ge e^{+}$ 从捕获态变成自由态的逃逸率。 这样自由态上 e^{+} 数的变化率如式(1.5),右边第一项表示从自由 态湮没而减少的 e^{+} 数,第二项表示被缺陷捕获而减少的 e^{+} 数,第 三项表示从捕获态重新变为自由态的 e^{+} 数,式(1.6)中各项的意 义与此类似。

经过并不复杂的适当求导,得寿命谱 S(t)为

 $S(t) = N_0 I_1 \Gamma_1 e^{-\Gamma_1 t} + N_0 I_2 \Gamma_2 e^{-\Gamma_2 t}$ (1.7) 即 e⁺寿命谱是两个指数成分之和。在数学上可以通过最小二乘 拟合用计算机求出这两个指数的寿命值和强度,结合材料的处理

• 7 •

工艺等参数,可研究材料的性质。如在金属的形变过程中,结合形 变量的大小,e⁺寿命值可给出产生了什么样的缺陷,寿命成分的 强度可给出缺陷数量的相对变化等信息。

1.3.2 2γ 湮没角关联测量

前面已经说明,e⁺湮没时若湮没对的动量为零,则 2γ 湮没放 出两个相反方向的 γ 光子,它们的夹角为 180°,但若湮没对有初始 动量 P,它在 z 方向上的投影为 P_z ,在 x 方向上投影为 P_x (见图 1.3),由于动量守恒,这个湮没对的动量必然要对两个 γ 光子的夹 角和能量产生影响, P_x 会产生多普勒效应(见 1.3.3 节多普勒增 宽能谱测量),而 P_z 会使两个 γ 光子与 180°共直线产生一个偏角 θ ,由动量守恒定律可以推知

 $P_{z} = m_{0} c\theta \quad \overrightarrow{g} \quad \theta = P_{z} / m_{0} c \tag{1.8}$

式中 m_0 为 e^- 静止质量, c 为光速, $m_0 c$ 为湮没光子的动量。

图 1.3 湮没过程中动量守恒的矢量图

实验中常用的所谓"一维长缝几何型角关联装置"实际上就是 能在不同的θ偏角下测量"符合"γ计数的装置。图1.4 表示这种 典型装置的原理及测得的曲线。在这种装置中,放射源放在靠近 样品的地方,通常还加磁场使 e⁺聚焦以增加有效源强,源周围有 铅屏蔽以利防护和吸收散射的 e⁺及γ射线。以样品为轴心,两侧 各放一个由 NaI(Tl)晶体和光电倍增管组成的闪烁探测器,在探 测器的前方各放置一个长而窄的铅准直器,γ射线可以通过准直 器中长而窄的缝到达探测器,准直器的缝宽决定了装置的角度分 辨率,一般调到使角度分辨率小于1mrad。单道分析器调到对应 于 511keV 光子的状态,符合电路的作用是使两个探测器只有在 测到同一个湮没对放出的两个 511keV γ光子时计数器才计数。

• 8 •

两个探测器中一个固定不动,另一个连同前面的准直器一起由转 臂带动绕样品转动,并在不同的 θ角下停留并记录符合计数,由 于湮没对的典型动能值只有几个电子伏特,相应的动量值与湮没 光子的动量值相比小很多,由式(1.8)中可以看到,造成的偏角很 小,通常只有十几毫弧度,为了保证必要的仪器角度分辨率,转臂 长度(探测器到样品之间的距离)通常有几米,由于同样的原因,铅 准直缝开得很窄,因此湮没辐射到达探头的比例很小,为了保证必 要的数据统计精度,必须使测量时间很长(测量一条曲线约几天), 并要用很强的放射源(50mCi~1 Ci)。

图 1.4 典型的角关联装置及测得的曲线

由于热化 e⁺的动量很小,所以角关联曲线主要反映的是 e⁻ 动量的信息。不同材料的角关联曲线有很大差别,它们反映了不 同的 e⁻动量密度分布。一维长缝几何型角关联装置在固体物理 中的应用是研究费米面(见第三章),在材料科学中可以研究缺陷。

图 1.5 为实际测得的金属的角关联曲线。由于在 θ 方向上 角关联曲线有对称性,因此往往只在 θ 的正方向上测量。通常把 这种角关联曲线近似看成由两条曲线叠加而成,与自由 e⁻湮没形 成的倒置抛物线分布 $N_v(\theta)$,而与芯 e⁻湮没则形成较宽的高斯 分布 $N_c(\theta)$,通常写成如下形式(具体推导见第三章):

 $N(\theta) = N_{\rm V}(\theta) + N_{\rm C}(\theta) \tag{1.9}$

• 9 •

图 1.5 金属(铝和铜)中典型的角关联曲线。倒抛物线部分是和自由 e⁻湮没造成的,而高斯部分是和芯 e⁻湮没造成的

 $N_v(\theta)$ 作为 θ 的函数是一个倒置的抛物线。若 e⁺只与金属中的 传导 e⁻(自由 e⁻)湮没,角关联曲线的最大宽度只有 θ_F 的两倍, θ_F 取决于金属的费米动量 P_F ,进而可求费米能量 E_F 。但实际上 在大于 θ_F 的地方仍可以测到计数,原因之一是由于 e⁺与动量较 大的芯 e⁻湮没,使得 γ 射线的偏角能够大于 θ_F,这里的芯 e⁻是指 除了传导 e⁻外的内层 e⁻。

图 1.6 角关联曲线,铝单晶的温度升 高,缺陷增多,角关联曲线由于缺陷增 多而变窄

当 e⁺ 被缺陷捕获以后,e⁺ 接 触高动量的芯 e⁻ 的机会少了,于 是高斯成分的贡献减小,而归一化 后的抛物线成分的贡献增大,另外 抛物线的宽度本身也会变窄,于是 角关联曲线中心部位上升,而两翼 下降,俗称角关联曲线变瘦,图 1.6 就表示这种变化的例子。为 了便于描述曲线的变化,通常引入 归一化峰顶计数 N(0),它等于角 关联曲线中 θ 等于零附近某一角 度范围内计数与整个曲线中总计数的比值。显然,缺陷越多,则峰顶计数 N(0)越大。

一维长缝几何型角关联不能分辨 y方向(长缝方向)上的角 度信息,事实上,湮没对动量在 y方向上的动量分量也会产生偏 角θ(见图1.7)。70年代起一种新的二维角关联装置开始出现, 它利用多个小探测器组成的探测器方阵(也可用多丝正比室或位

图 1.7 二维角关联装置示意图,湮没对的动量 P 对湮没辐射 光子的角度 θ 和 φ 都有影响。 $\theta = \frac{P_z}{m_0 c}, \varphi = \frac{P_y}{m_0 c}$

图 1.8 在 100K 测量的铜的二维角关联表面,插图中利用布里渊区表明了 晶体取向

置灵敏探测器等)来代替一维角关联中长缝探测器,能同时在不同 的 θ 和 φ 角下测量,利用计算机对不同的 θ 和 φ 角下信息组合, 可得到二维角关联图形,再通过再构技术,可得到三维动量分布, 因而能获得更详细的费米面信息。图 1.8 是一个铜的二维角关联 测量结果。

1.3.3 湮没 γ射线多普勒增宽能谱测量

测量多普勒增宽能谱的装置实际上就是一台γ能谱分析仪 (图 1.9),由 Ge(Li)探测器或高纯锗探测器测量每一个γ光子的 能量,来自探测器的脉冲电压经适当放大后送入多道分析器记录。 实验中要求探测器的能量分辨率尽可能高并采用稳谱措施。

图 1.9 多普勒增宽谱仪方框图

上一节已经提到,湮没对的总动量在 x 方向的分量 P_x 会对 湮没 γ 射线产生多普勒效应,设与 P_x 相同方向的 γ 射线能量为 hv,相反方向的 γ 射线能量为 hv',根据能量和动量守恒定律,得

$$\begin{cases} 2 m_0 c^2 = h\nu + h\nu' \\ P_x = h\nu/v - h\nu'/c \end{cases}$$
(1.10)

式中 m_0 是 e⁻静止质量, c 是光速。

若忽略很小的热化 e⁺动量,则从上式中可以得出 γ 射线的能量和湮没 e⁻在 x 方向上的动量分量之间的对应关系。在实际材料中,e⁻运动可以任意取向,动量相同的 e⁻也会由于在 x 方向上的分量的不同而造成不同的能移,但以沿 x 方向运动的 e⁻造成的能移为最大,因此,由 e⁻总能量 $E_e = P^2/2 m_0$ 关系式可以求出能量为 E_e 的 e⁻所造成的 γ 射线的最大多普勒能移,例如:若 $E_e = P^2$

• 12 •

8.8eV,则 $h\nu = (511+1.5)$ keV, $h\nu' = (511-1.5)$ keV。图1.10 表示退火铜(缺陷较少)和形变铜(缺陷较多)的实测图,形变铜曲 线比退火铜曲线窄一些。

图 1.10 缺陷对多普勒增宽谱曲线的影响,有缺陷的样品曲线变 "瘦",右图表示仪器对单能γ射线的响应,常以这种曲线峰值高度一

半处的全宽度(FWHM)来表示仪器的能量分辨率

为了定量地描述这些变化,在实验中通常引入所谓"线形参数"。由不同的定义可以得到不同的线形参数,如早期人们按图 1.11 所示定义三个参数,设图中曲线下的总面积为 Δ ,三个阴影 部分的面积分别为 A、B、C,峰高参数 S和 H,翼参数 W的定义 如下:

$$\begin{cases} S = A/(B+C) \\ H = A/\Delta \\ W = (B+C)/\Delta \end{cases}$$
(1.11)

选择适当的边界,常使 S=3 左右, H=0.5 左右。显然,缺陷 增多曲线变瘦会造成 S、H 参数增大而翼参数 W 减小。从图 1.11 可以看到,对同一个谱,若阴影部分边界的选择发生了变化,

• 13 •