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C H A P T E R

A short history of SPM

K. Friston

INTRODUCTION

For a young person entering imaging neuroscience it
must seem that the field is very large and complicated,
with numerous approaches to experimental design and
analysis. This impression is probably compounded by the
abundance of TLAs (three-letter-acronyms) and obscure
terminology. In fact, most of the principles behind design
and analysis are quite simple and had to be established
in a relatively short period of time at the inception of
brain mapping. This chapter presents an anecdotal per-
spective on this period. It serves to explain why some
ideas, like t-maps or, more technically, statistical para-
metric maps, were introduced and why other issues, like
global normalization, were crucial, even if they are not
so important nowadays.

The history of human brain mapping is probably
shorter than many people might think. Activation stud-
ies depend on imaging changes in brain state within the
same scanning session. This was made possible using
short-half-life radiotracers and positron emission tomog-
raphy (PET). These techniques became available in the
eighties (e.g. Herscovitch ef al., 1983) and the first activa-
tion maps appeared soon after (e.g. Lauter et al., 1985; Fox
et al., 1986). Up until this time, regional differences among
brain scans had been characterized using hand-drawn
regions of interest (ROI), reducing hundreds of thou-
sands of voxels to a handful of ROI measurements, with
a somewhat imprecise anatomical validity. The idea of
making voxel-specific statistical inferences, through the
use of statistical parametric maps, emerged in response to
the clear need to make inferences about brain responses
without knowing where those responses were going to
be expressed. The first t-map was used to establish func-
tional specialization for colour processing in 1989 (Lueck
et al., 1989). The underlying methodology was described
in a paper entitled: ‘The relationship between global and
local changes in PET scans’ (Friston et al., 1990). This

Statistical Parametric Mapping, by Karl Friston et al.
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may seem an odd title to introduce statistical parametric
mapping (SPM) but it belies a key motivation behind the
approach.

Statistical maps versus regions of interest

Until that time, images were usually analysed with
analysis of variance (ANOVA) using ROI averages.
This approach had become established in the analy-
sis of autoradiographic data in basic neuroscience and
metabolic scans in human subjects. Critically, each region
was treated as a level of a factor. This meant that the
regional specificity of a particular treatment was encoded
in the region by treatment interaction. In other words,
a main effect of treatment per se was not sufficient to
infer a regionally specific response. This is because some
treatments induced a global effect that was expressed in
all the ROIs. Global effects were, therefore, one of the
first major conceptual issues in the development of SPM.
The approach taken was to treat global activity as a con-
found in a separate analysis of covariance (ANCOVA)
at each voxel, thereby endowing inference with a regional
specificity that could not be explained by global changes.
The resulting SPMs were like X-rays of region-specific
changes and, like X-rays, are still reported in maximum-
intensity projection format (known colloquially as glass-
brains). The issue of regional versus global changes and
the validity of global estimators were debated for several
years, with many publications in the specialist literature.
Interestingly, it is a theme that enjoyed a reprise with the
advent of functional magnetic resonance imaging (fMRI)
(e.g. Aguirre et al., 1998) and still attracts some research
interest today.

Adopting a voxel-wise ANCOVA model paved the
way for a divergence between the mass-univariate
approach used by SPM (i.e. a statistic for each voxel)
and multivariate models used previously. A subtle but

Copyright 2007, Elsevier Ltd. All rights reserved.
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important motivation for mass-univariate approaches
was the fact that a measured haemodynamic response
in one part of the brain may differ from the response
in another, even if the underlying neuronal activation was
exactly the same. This meant that the convention of using
region-by-condition interactions as a test for regionally
specific effects was not tenable. In other words, even
if one showed that two regions activated differently in
terms of measured haemodynamics, this did not mean
there was a regionally specific difference at the neuronal
or computational level. This issue seems to have escaped
the electroencephalography (EEG) community, who still
use ANOVA with region as a factor, despite the fact that
the link between neuronal responses and channel mea-
surements is even more indeterminate than for metabolic
imaging. However, the move to voxel-wise, whole-brain
analysis entailed two special problems: the problem of
registering images from different subjects so that they
could be compared on a voxel-by-voxel basis and the
multiple-comparisons problem that ensued.

Spatial normalization

The pioneering work of the St Louis group had already
established the notion of a common anatomical or stereo-
tactic space (Fox et al., 1988) in which to place subtraction
or difference maps, using skull X-rays as a reference. The
issue was how to get images into that space efficiently.
Initially, we tried identifying landmarks in the functional
data themselves to drive the registration (Friston et al.,
1989). This approach was dropped almost immediately
because it relied on landmark identification and was not a
hundred per cent reproducible. Within a year, a more reli-
able, if less accurate, solution was devised that matched
images to a template without the need for landmarks
(Friston ef al., 1991a). The techniques for spatial normal-
ization using template- or model-based approaches have
developed consistently since that time and current treat-
ments regard normalization as the inversion of genera-
tive models for anatomical variation that involve warp-
ing templates to produce subject-specific images (e.g.
Ashburner and Friston, 2005).

Topological inference

Clearly, performing a statistical test at each voxel engen-
dered an enormous false positive rate when using unad-
justed thresholds to declare activations significant. The
problem was further compounded by the fact that the
data were not spatially independent and a simple Bonfer-
roni correction was inappropriate (PET and SPECT (sin-
gle photon emission computerized tomography) data are

inherently very smooth and fMRI had not been invented
at this stage). This was the second major theme that occu-
pied people trying to characterize functional neuroimag-
ing data. What was needed was a way of predicting the
probabilistic behaviour of SPMs, under the null hypothe-
sis of no activation, which accounted for the smoothness
or spatial correlations among voxels. From practical expe-
rience, it was obvious that controlling the false positive
rate of voxels was not the answer. One could increase
the number of positive voxels by simply making the vox-
els smaller but without changing the topology of the
SPM. It became evident that conventional control proce-
dures developed for controlling family-wise error (e.g.
the Bonferroni correction) had no role in making infer-
ences on continuous images. What was needed was a new
framework in which one could control the false positive
rate of the regional effects themselves, noting a regional
effect is a topological feature, not a voxel.

The search for a framework for topological infer-
ence in neuroimaging started in the theory of stochas-
tic processes and level-crossings (Friston ef al., 1991b).
It quickly transpired that the resulting heuristics were
the same as established results from the theory of ran-
dom fields. Random fields are stochastic processes that
conform very nicely to realizations of brain scans under
normal situations. Within months, the technology to cor-
rect p-values was defined within random field theory
(Worsley et al., 1992). Although the basic principles of
topological inference were established at this time, there
were further exciting mathematical developments with
extensions to different sorts of SPMs and the ability to
adjust the p-values for small bounded volumes of inter-
est (see Worsley et al., 1996). Robert Adler, one of the
world’s contemporary experts in random field theory,
who had abandoned it years before, was understandably
very pleased and is currently writing a book with a pro-
tégé of Keith Worsley (Adler and Taylor, in preparation).

Statistical parametric mapping

The name ‘statistical parametric mapping” was chosen
carefully for a number of reasons. First, it acknowledged
the TLA of ‘significance probability mapping’, devel-
oped for EEG. Significance probability mapping involved
creating interpolated pseudo-maps of p-values to dis-
close the spatiotemporal organization of evoked electrical
responses (Duffy et al., 1981). The second reason was
more colloquial. In PET, many images are derived from
the raw data reflecting a number of different physiolog-
ical parameters (e.g. oxygen metabolism, oxygen extrac-
tion fraction, regional cerebral blood flow etc.). These
were referred to as parametric maps. All parametric
maps are non-linear functions of the original data. The
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distinctive thing about statistical parametric maps is that
they have a known distribution under the null hypoth-
esis. This is because they are predicated on a statistical
model of the data (as opposed to a physiological para-
metric model).

One important controversy, about the statistical mod-
els employed, was whether the random fluctuations or
error variance was the same from brain region to brain
region. We maintained that it was not (on common sense
grounds that the frontal operculum and ventricles were
not going to show the same fluctuations in blood flow)
and adhered to voxel-specific estimates of error. For PET,
the Montreal group considered that the differences in
variability could be discounted. This allowed them to
pool their error variance estimator over voxels to give
very sensitive SPMs (under the assumption of stationary
error variance). Because the error variance was assumed
to be the same everywhere, the resulting f-maps were
simply scaled subtraction or difference maps (see Fox
et al., 1988). This issue has not dogged fMRI, where it is
generally accepted that error variance is voxel-specific.

The third motivation for the ‘statistical paramet-
ric mapping’ was that it reminded people they were
using parametric statistics that assume the errors are
additive and Gaussian. This is in contradistinction to
non-parametric approaches that are generally less sensi-
tive, more computationally intensive, but do not make
any assumptions about the distribution of error terms.
Although there are some important applications of
non-parametric approaches, they are generally a spe-
cialist application in the imaging community. This is
largely because brain imaging data conform almost
exactly to parametric assumptions by the nature of
image reconstruction, post-processing and experimental
design.

THE PET YEARS

In the first few years of the nineties, many landmark
papers were published using PET and the agenda for
a functional neuroimaging programme was established.
SPM proved to be the most popular way of characteriz-
ing brain activation data. It was encoded in Matlab and
used extensively by the MRC Cyclotron Unit at the Ham-
mersmith Hospital in the UK and was then distributed
to collaborators and other interested units around the
world. The first people outside the Hammersmith group
to use SPM were researchers at NIH (National Institutes
of Health, UDA) (e.g. Grady et al., 1994). Within a cou-
ple of years, SPM had become the community standard
for analysing PET activation studies and the assump-
tions behind SPM were largely taken for granted. By

this stage, SPM was synonymous with the general lin-
ear model and random field theory. Although originally
framed in terms of ANCOVA, it was quickly realized
that any general linear model could be used to produce
an SPM. This spawned a simple taxonomy of experimen-
tal designs and their associated statistical models. These
were summarized in terms of subtraction or categorical
designs, parametric designs and factorial designs (Friston
et al., 1995a). The adoption of factorial designs was one of
the most important advances at this point. The first facto-
rial designs focused on adaptation during motor learning
and studies looking at the interaction between a psycho-
logical and pharmacological challenge in psychopharma-
cological studies (e.g. Friston et al., 1992). The ability to
look at the effect of changes in the level of one factor on
activations induced by another led to a rethink of cogni-
tive subtraction and pure insertion and the appreciation
of context-sensitive activations in the brain. The latitude
afforded by factorial designs is reflected in the fact that
most studies are now multifactorial in nature.

THE fMRI YEARS

In 1992, at the annual meeting of the Society of Cerebral
Blood Flow and Metabolism in Miami, Florida, Jack Bel-
liveau presented, in the first presentation of the opening
session, provisional results using photic stimulation with
fMRI. This was quite a shock to the imaging commu-
nity that was just starting to relax: most of the problems
had been resolved, community standards had been estab-
lished and the way forward seemed clear. It was immedi-
ately apparent that this new technology was going to re-
shape brain mapping radically, the community was going
to enlarge and established researchers were going to have
to re-skill. The benefits of fMRI were clear, in terms of the
ability to take many hundreds of scans within one scan-
ning session and to repeat these sessions indefinitely in
the same subject. Some people say that the main advances
in a field, following a technological breakthrough, are
made within the first few years. Imaging neuroscience
must be fairly unique in the biological sciences, in that
exactly five years after the inception of PET activation
studies, fMRI arrived. The advent of fMRI brought with
it a new wave of innovation and enthusiasm.

From the point of view of SPM, there were two prob-
lems, one easy and one hard. The first problem was how
to model evoked haemodynamic responses in fMRI time-
series. This was an easy problem to resolve because SPM
could use any general linear model, including convolu-
tion models of the way haemodynamic responses were
caused (Friston et al., 1994). Stimulus functions encod-
ing the occurrence of a particular event or experimental



6 1. A SHORT HISTORY OF SPM

state (e.g. boxcar-functions) were simply convolved with
a haemodynamic response function (HRF) to form regres-
sors in a general linear model (cf multiple linear regres-
sion).

Serial correlations

The second problem that SPM had to contend with was
the fact that successive scans in fMRI time-series were
not independent. In PET, each observation was statisti-
cally independent of its precedent but, in fMRI coloured
time-series, noise rendered this assumption invalid. The
existence of temporal correlations originally met with
some scepticism, but is now established as an impor-
tant aspect of fMRI time-series. The SPM community
tried a series of heuristic solutions until it arrived at
the solution presented in Worsley and Friston (1995).
This procedure, also known as ‘pre-colouring’, replaced
the unknown endogenous autocorrelation by imposing
a known autocorrelation structure. Inference was based
on the Satterthwaite conjecture and is formally identi-
cal to the non-specificity correction developed by Geisser
and Greenhouse in conventional parametric statistics. An
alternative approach was ‘pre-whitening” which tried to
estimate a filter matrix from the data to de-correlate
the errors (Bullmore ef al., 2001). The issue of serial
correlations, and more generally non-sphericity, is still
important and attracts much research interest, particu-
larly in the context of maximum likelihood techniques
and empirical Bayes (Friston et al., 2002).

New problems and old problems

The fMRI community adopted many of the develop-
ments from the early days of PET. Among these were
the use of the standard anatomical space provided by the
atlas of Talairach and Tournoux (1988) and conceptual
issues relating to experimental design and interpretation.
Many debates that had dogged early PET research were
resolved rapidly in fMRI; for example, “‘What constitutes
a baseline?” This question, which had preoccupied the
whole community at the start of PET, appeared to be a
non-issue in fMRI with the use of well-controlled exper-
imental paradigms. Other issues, such as global normal-
ization were briefly revisited, given the different nature
of global effects in fMRI (multiplicative) relative to PET
(additive). However, one issue remained largely ignored
by the fMRI community. This was the issue of adjusting
p-values for the multiplicity of tests performed. While
people using SPM quite happily adjusted their p-values
using random field theory, others seemed unaware of the
need to control false positive rates. The literature now

entertained reports based on uncorrected p-values, an
issue which still confounds editorial decisions today. It is
interesting to contrast this, historically, with the appear-
ance of the first PET studies.

When people first started reporting PET experiments
there was an enormous concern about the rigor and valid-
ity of the inferences that were being made. Much of
this concern came from outside the imaging community
who, understandably, wanted to be convinced that the
‘blobs’ that they saw in papers (usually Nature or Sci-
ence) reflected true activations as opposed to noise. The
culture at that time was hostile to capricious reporting
and there was a clear message from the broader scien-
tific community that the issue of false positives had to
be resolved. This was a primary motivation for develop-
ing the machinery to adjust p-values to protect against
family-wise false positives. In a sense, SPM was a reac-
tion to the clear mandate set by the larger community,
to develop a valid and rigorous framework for activa-
tion studies. In short, SPM was developed in a culture
of scepticism about brain mapping that was most eas-
ily articulated by critiquing its validity. This meant that
the emphasis was on specificity and reproducibility, as
opposed to sensitivity and flexibility. Current standards
for reporting brain mapping studies are much more
forgiving than they were at its beginning, which may
explain why recent developments have focused on sen-
sitivity (e.g. Genovese et al., 2002).

The convolution model

In the mid-nineties, there was lots of fMRI research;
some of it was novel, some recapitulating earlier find-
ings with PET. From a methodological point of view,
notable advances included the development of event-
related paradigms that furnished an escape from the
constraints imposed by block designs and the use of
retinotopic mapping to establish the organization of cor-
tical areas in human visual cortex. This inspired a whole
sub-field of cortical surface mapping that is an important
endeavour in early sensory neuroimaging. For SPM there
were three challenges that needed to be addressed:

Temporal basis functions

The first involved a refinement of the models of evoked
responses. The convolution model had become a cor-
nerstone for fMRI with SPM. The only remaining issue
was the form of the convolution kernel or haemody-
namic response function that should be adopted and
whether the form changed from region to region. This
was resolved simply by convolving the stimulus func-
tion with not one response function but several [basis
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functions]. This meant that one could model condi-
tion, voxel and subject-specific haemodynamic responses
using established approaches. Temporal basis functions
(Friston et al., 1995b) were important because they
allowed one to define a family of HRFs that could change
their form from voxel to voxel. Temporal basis functions
found an important application in the analysis of event-
related fMRI. The general acceptance of the convolution
model was consolidated by the influential paper of Boyn-
ton a year later (Boynton ef al., 1996). However, at this
time, people were starting to notice some non-linearities
in fMRI responses (Vazquez and Noll, 1998) that were
formulated, in the context of SPM, as a Volterra series
expansion of the stimulus function (Friston et al., 1998).
This was simple because the Volterra series can be for-
mulated as another linear model (compare with a Taylor
expansion). These Volterra characterizations would later
be used to link empirical data and balloon models of
haemodynamic responses.

Efficiency and experimental design

The second issue that concerned the developers of SPM
arose from the growing number and design of event-
related fMRI studies. This was the efficiency with which
responses could be detected and estimated. Using an
analytical formulation, it was simple to show that the
boxcar paradigms were much more efficient that event-
related paradigms, but event-related paradigms could be
made efficient by randomizing the occurrence of partic-
ular events such that they ‘bunched’ together to increase
experimental variance. This was an interesting time in
the development of data analysis techniques because it
enforced a signal processing perspective on the general
linear models employed.

Hierarchical models

The third area motivating the development of SPM was
especially important in fMRI and reflects the fact that
many scans can be obtained in many individuals. Unlike
in PET, the within-subject scan-to-scan variability can be
very different from the between-subject variability. This
difference in variability has meant that inferences about
responses in a single subject (using within-subject vari-
ability) are distinct from inferences about the population
from which that subject was drawn (using between-
subject variability). More formally, this distinction is
between fixed- and random-effects analyses. This distinc-
tion speaks to hierarchical observation models for fMRI
data. Because SPM only had the machinery to do single-
level (fixed-effects) analyses, a device was required to
implement random-effects analyses. This turned out to
be relatively easy and intuitive: subject-specific effects
were estimated in a first-level analysis and the contrasts

of parameter estimates (e.g. activations) were then re-
entered into a second-level SPM analysis (Holmes and
Friston, 1998). This recursive use of a single-level statis-
tical model is fortuitously equivalent to multilevel hier-
archical analyses (compare with the summary statistic
approach in conventional statistics).

Bayesian developments

Understanding hierarchical models of fMRI data was
important for another reason: these models support
empirical Bayesian treatments. Empirical Bayes was one
important component of a paradigm shift in SPM from
classical inference to a Bayesian perspective. From the
late nineties, Bayesian inversion of anatomical models
had been a central part of spatial normalization. How-
ever, despite early attempts (Holmes and Ford, 1993),
the appropriate priors for functional data remained elu-
sive. Hierarchical models provided the answer, in the
form of empirical priors that could be evaluated from
the data themselves. This evaluation depends on the con-
ditional dependence implicit in hierarchical models and
brought previous maximum likelihood schemes into the
more general Bayesian framework. In short, the classi-
cal schemes SPM had been using were all special cases
of hierarchical Bayes (in the same way that the original
ANCOVA models for PET were special cases of the gen-
eral linear models for fMRI). In some instances, this con-
nection was very revealing, for example, the equivalence
between classical covariance component estimation using
restricted maximum likelihood (i.e. ReML) and the inver-
sion of two-level models with expectation maximization
(EM) meant we could use the same techniques used to
estimate serial correlations to estimate empirical priors
on activations (Friston et al., 2002).

The shift to a Bayesian perspective had a number of
motivations. The most principled was an appreciation
that estimation and inference corresponded to Bayesian
inversion of generative models of imaging data. This
placed an emphasis on generative or forward models for
fMRI that underpinned work on biophysical modelling
of haemodynamic responses and, indeed, the frame-
work entailed by dynamic causal modelling (e.g. Fris-
ton et al., 2003; Penny et al., 2004). This reformulation
led to more informed spatiotemporal models for fMRI
(e.g. Penny et al., 2005) that effectively estimate the opti-
mum smoothing by embedding spatial dependencies
in a hierarchical model. It is probably no coincidence
that these developments coincided with the arrival of
the Gatsby Computational Neuroscience Unit next to
the Wellcome Department of Imaging Neuroscience. The
Gatsby housed several experts in Bayesian inversion and
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machine learning and the Wellcome was home to many
of the SPM co-authors.

The second motivation for Bayesian treatments of
imaging data was to bring the analysis of EEG and
fMRI data into the same forum. Source reconstruction
in EEG and MEG (magnetoencephalography) is an ill-
posed problem that depends explicitly on regularization
or priors on the solution. The notion of forward models
in EEG-MEG, and their Bayesian inversion had been well
established for decades and SPM needed to place fMRI
on the same footing.

THE MEG-EEG YEARS

At the turn of the century people had started applying
SPM to source reconstructed EEG data (e.g. Bosch-Bayard
et al., 2001). Although SPM is not used widely for the
analysis of EEG-MEG data, over the past five years most
of the development work in SPM has focused on this
modality. The motivation was to accommodate differ-
ent modalities (e.g. fMRI-EEG) within the same analytic
and anatomical framework. This reflected the growing
appreciation that fMRI and EEG could offer complemen-
tary constraints on the inversion of generative models.
At a deeper level, the focus had shifted from generative
models of a particular modality (e.g. convolution mod-
els for fMRI) and towards models of neuronal dynamics
that could explain any modality. The inversion of these

TABLE 1-1 Some common TLAs

TLA Three letter acronym

SPM Statistical parametric
map(ping)

GLM General linear model

RFT Random field theory

ERP Event-related potential

ERF Event-related field

MMN Mis-match negativity

PPI Psychophysiological
interaction

VBM Voxel-based
morphometry

FWE Family-wise error

FDR False discovery rate

IID Independent and
identically distributed

MRI Magnetic resonance
imaging

PET Positron emission
tomography

EEG Electroencephalography

MEG
Magnetoencephalography

HRF Haemodynamic response

function

IRF Impulse response function

FIR Finite impulse response

DCM Dynamic causal model

SEM Structural equation model

SSM State-space model

MAR Multivariate
autoregression

LTI Linear time invariant

PEB Parametric empirical
Bayes

DEM Dynamic expectation

maximization

GEM Generalized expectation
maximization

BEM Boundary-element
method

FEM Finite-element method

models corresponds to true multimodal fusion and is the
aim of recent and current developments within SPM.

In concrete terms, this period saw the application of
random field theory to SPMs of evoked and induced
responses, highlighting the fact that SPMs can be applied
to non-anatomical spaces, such as space-peristimulus-
time or time-frequency (e.g. Kilner et al., 2005). It has seen
the application of hierarchical Bayes to the source recon-
struction problem, rendering previous heuristics, like L-
curve analysis, redundant (e.g. Phillips et al., 2002) and
it has seen the extension of dynamic causal modelling to
cover evoked responses in EEG-MEG (David et al., 2006).

This section is necessarily short because the history
of SPM stops here. Despite this, a lot of the material in
this book is devoted to biophysical models of neuronal
responses that can, in principle, explain any modality.
Much of SPM is about the inversion of these models. In
what follows, we try to explain the meaning of the more
important TLAs entailed by SPM (Table 1-1).
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Statistical parametric mapping

K. Friston

INTRODUCTION

This chapter summarizes the ideas and procedures used
in the analysis of brain imaging data. It provides suffi-
cient background to understand the principles of experi-
mental design and data analysis and serves to introduce
the main themes covered by subsequent chapters. These
chapters have been organized into six parts. The first
three parts follow the key stages of analysis: image trans-
formations, modelling, and inference. These parts focus
on identifying, and making inferences about, regionally
specific effects in the brain. The final three parts address
biophysical models of distributed neuronal responses,
closing with analyses of functional and effective connec-
tivity.

Characterizing a regionally specific effect rests on esti-
mation and inference. Inferences in neuroimaging may be
about differences expressed when comparing one group
of subjects to another or, within subjects, changes over
a sequence of observations. They may pertain to struc-
tural differences (e.g. in voxel-based morphometry) (Ash-
burner and Friston, 2000) or neurophysiological measures
of brain functions (e.g. fMRI or functional magnetic reso-
nance imaging). The principles of data analysis are very
similar for all of these applications and constitute the
subject of this and subsequent chapters. We will focus on
the analysis of fMRI time-series because this covers many
of the issues that are encountered in other modalities.
Generally, the analyses of structural and PET (positron
emission tomography) data are simpler because they do
not have to deal with correlated errors from one scan to
the next. Conversely, EEG and MEG (electro- and magne-
toencephalography) present special problems for model
inversion, however, many of the basic principles are
shared by fMRI and EEG, because they are both caused
by distributed neuronal dynamics. This chapter focuses
on the design and analysis of neuroimaging studies. In
the next chapter, we will look at conceptual and mathe-
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matical models that underpin the operational issues cov-
ered here.

Background

Statistical parametric mapping is used to identify
regionally specific effects in neuroimaging data and is a
prevalent approach to characterizing functional anatomy,
specialization and disease-related changes. The com-
plementary perspective, namely functional integration,
requires a different set of approaches that examine the
relationship among changes in one brain region rela-
tive to changes in others. Statistical parametric mapping
is a voxel-based approach, employing topological infer-
ence, to make some comment about regionally specific
responses to experimental factors. In order to assign an
observed response to a particular brain structure, or cor-
tical area, the data are usually mapped into an anatomical
space. Before considering statistical modelling, we deal
briefly with how images are realigned and normalized
into some standard anatomical space. The general ideas
behind statistical parametric mapping are then described
and illustrated with attention to the different sorts of
inferences that can be made with different experimental
designs.

EEG, MEG and fMRI data lend themselves to a signal
processing perspective. This can be exploited to ensure
that both the design and analysis are as efficient as pos-
sible. Linear time invariant models provide the bridge
between inferential models employed by statistical map-
ping and conventional signal processing approaches. We
will touch on these and develop them further in the next
chapter. Temporal autocorrelations in noise processes
represent another important issue, especially in fMRI,
and approaches to maximizing efficiency in the context
of serially correlated errors will be discussed. We will
also consider event and epoch-related designs in terms of
efficiency. The chapter closes by looking at the distinction

Copyright 2007, Elsevier Ltd. All rights reserved.
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between fixed and random-effect analyses and how this
relates to inferences about the subjects studied or the
population from which these subjects came.

In summary, this chapter reviews the three main stages
of data analysis: spatial or image transforms, modelling
and inference; these are the areas covered in the first three
parts of this book and are summarized schematically in
Plate 1 (see colour plate section). We then look at exper-
imental design in light of the models covered in earlier
parts. The next chapter deals with different models of
distributed responses and previews the material covered
in the final three parts of this book.

SPATIAL TRANSFORMS AND
COMPUTATIONAL ANATOMY

A central theme in this book is the inversion of forward
or generative models of how data are caused. We will
see this in many different contexts, from the inversion
of linear models of fMRI time-series to the inversion of
dynamic causal models of distributed EEG responses.
Image reconstruction, in imaging modalities like PET and
fMRI, can be regarded as inverting a forward model
of how signals, deployed in anatomical space, conspire
to produce measured signals. In other modalities, like
EEG and MEG, this inversion, or source reconstruction,
can be a substantial problem in its own right. In most
instances, it is expedient to decompose the inversion of
forward spatiotemporal models into spatial and temporal
parts. Operationally, this corresponds to reconstructing
the spatial signal at each time point and then invert-
ing a temporal model of the time-series at each spatial
source (although we will consider full spatiotemporal
models in Chapters 25 and 26). This view of source or
image reconstruction as model inversion can be extended
to cover the inversion of anatomical models describing
anatomical variation within and between subjects. The
inversion of these models corresponds to registration and
normalization respectively. The aim of these anatomical
inversions or transformations is to remove or character-
ize anatomical differences. Chapters 4 to 6 deal with the
inversion of anatomical models for imaging modalities.
Figure 2.1 shows an example of a generative model for
structural images that is presented in Chapter 6. Chap-
ters 28 and 29 deal with the corresponding inversion for
EEG and MEG data.

This inversion corresponds to a series of spatial trans-
formations that try to reduce unwanted variance com-
ponents in the voxel time-series. These components are
induced by movement or shape differences among a
series of scans. Voxel-based analyses assume that data
from a particular voxel derive from the same part of

the brain. Violations of this assumption will introduce
artefactual changes in the time-series that may obscure
changes, or differences, of interest. Even single-subject
analyses usually proceed in a standard anatomical space,
simply to enable reporting of regionally-specific effects in
a frame of reference that can be related to other studies.
The first step is to realign the data to undo the effects
of subject movement during the scanning session (see
Chapter 4). After realignment, the data are then trans-
formed using linear or non-linear warps into a standard
anatomical space (see Chapters 5 and 6). Finally, the data
are usually spatially smoothed before inverting the tem-
poral part of the model.

Realignment

Changes in signal intensity over time, from any one
voxel, can arise from head motion and this represents a
serious confound, particularly in fMRI studies. Despite
restraints on head movement, cooperative subjects still
show displacements of up several millimetres. Realign-
ment involves estimating the six parameters of an affine
‘rigid-body’ transformation that minimizes the differ-
ences between each successive scan and a reference scan
(usually the first or the average of all scans in the
time series). The transformation is then applied by re-
sampling the data using an interpolation scheme. Esti-
mation of the affine transformation is usually effected
with a first-order approximation of the Taylor expansion
of the effect of movement on signal intensity using the
spatial derivatives of the images (see below). This allows
for a simple iterative least square solution that corre-
sponds to a Gauss-Newton search (Friston et al., 1995a).
For most imaging modalities this procedure is sufficient
to realign scans to, in some instances, a hundred microns
or so (Friston et al., 1996a). However, in fMRI, even after
perfect realignment, movement-related signals can still
persist. This calls for a further step in which the data are
adjusted for residual movement-related effects.

Adjusting for movement-related effects

In extreme cases, as much as 90 per cent of the variance
in fMRI time-series can be accounted for by the effects
of movement after realignment (Friston et al., 1996a).
Causes of these movement-related components are due to
movement effects that cannot be modelled using a linear
model. These non-linear effects include: subject move-
ment between slice acquisition, interpolation artefacts
(Grootoonk et al., 2000), non-linear distortion due to mag-
netic field inhomogeneities (Andersson ef al., 2001) and
spin-excitation history effects (Friston et al., 1996a). The
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A generative model for images
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FIGURE 2.1 A graphical model describing the generation of an image. The boxes or ‘nodes’ represent quantities required to generate an
image and the lines or ‘edges’ encode conditional dependencies among these quantities. This graphical description is a useful way to describe
a generative model and makes all the conditional dependencies explicit. In this example, one starts by sampling some warping parameters o
from their prior density p(a). These are used to resample (i.e. warp) a series of tissue-class maps to give b(a);. for each voxel and tissue class.
The warping parameters model subject-specific anatomical deformations. Mixing parameters vy are then selected from their prior density p(y);
these control the relative proportions of different tissue-classes over the brain. The mixing parameters scale the tissue-class maps to provide a
density from which a voxel-specific tissue-class c; is sampled. This specifies a mixture of Gaussians from which the voxel intensity is sampled.
This mixture is specified in terms of the expectations u and variances o of their constituent Gaussians that are sampled from the prior density
p(u, 0). The final stage of image construction is to scale the voxel values with some slowly varying intensity field whose parameters § are
sampled from their prior p(B8). The resulting image embodies random effects expressed at the level of anatomical deformation, amount of
different tissue types, the expression of those tissues in the measurement, and image-specific inhomogeneities. Inversion of this generative
model implicitly corrects for intensity variations, classifies each voxel probabilistically (i.e. segments) and spatially normalizes the image.
Critically, this inversion accounts properly for all the conditional dependencies among the model’s parameters and provides the most likely
estimates given the data (see Chapter 6 for details of this model and its inversion).

latter can be pronounced if the repetition time approaches displacement in previous scans to explain movement-
T1 making the current signal a function of movement related signal in the current scan. However, it is also a
history. These effects can render the movement-related reasonable model for other sources of movement-related
signal a non-linear function of displacement in the n-th confounds. Generally, for repetition times (TR) of several
and previous scans: seconds, interpolation artefacts supersede (Grootoonk
et al., 2000) and first-order terms, comprising an expan-
Y= fXy, Xyg, o) sion of the current displacement in terms of periodic basis

functions, are sufficient.
By assuming a sensible form for this function, one can This section has considered spatial realignment. In mul-
include these effects in the temporal model, so that they tislice acquisition, different slices are acquired at different
are explained away when making inferences about acti- times. This raises the possibility of temporal realignment to
vations. This relies on accurate displacement estimates ensure that the data from any given volume were sampled
from the realignment and assumes activations are not at the same time. This is usually performed using inter-
correlated with the movements (any component that is polation over time and only when the TR is sufficiently
correlated will be explained away). small to permit interpolation. Generally, timing effects of
The form for f(x,, x,_,...), proposed in Friston et al. this sortare not considered problematic because they man-
(1996a), was a non-linear autoregression model that used ifest as artefactual latency differences in evoked responses
polynomial expansions to second order. This model was from region to region. Given that biological latency differ-

motivated by spin-excitation history effects and allowed ences are in the order of a few seconds, inferences about





