0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 医学 > 1001 基础医学 > 医学物理学=Textbook of Medical Physics:英文

相同语种的商品

医学物理学=Textbook of Medical Physics:英文


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
医学物理学=Textbook of Medical Physics:英文
  • 书号:9787030637055
    作者:(美)艾伦·詹巴蒂斯塔(Alan Giambattista)等
  • 外文书名:
  • 装帧:平装
    开本:16
  • 页数:370
    字数:814000
    语种:en
  • 出版社:科学出版社
    出版时间:2020-01-01
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • CONTENTS
    Chapter 1 Introduction 1
    1.1 WHY STUDY PHYSICS? 1
    1.2 TALKING PHYSICS 1
    1.3 PHYSICS FOR MEDICINE AND BIOLOGY 2
    1.3.1 Physics in Life Science 2
    1.3.2 Biomedical Applications 3
    1.4 THE USE OF MATHEMATICS 3
    1.4.1 Mathematics Base 3
    1.4.2 Ratios and Proportions 3
    1.4.3 Approximation 4
    1.5 SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 6
    1.5.1 Rules for Identifying Significant Figures 6
    1.5.2 Significant Figures in Calculations 7
    1.6 UNITS 8
    1.7 DIMENSIONALANALYSIS 10
    1.8 PROBLEM-SOLVING TECHNIQUES 12
    Chapter 2 Mechanics 16
    2.1 UNIFORM CIRCULAR MOTION 16
    2.1.1 Angular Displacement and Angular Velocity 16
    2.1.2 Radian Measure 17
    2.1.3 Relation between Linear and Angular Speed 18
    2.1.4 Period and Frequency 18
    2.2 RADIAL ACCELERATION 19
    2.2.1 Direction of Radial Acceleration 19
    2.2.2 Magnitude of the Radial Acceleration 20
    2.3 TANGENTIAL ACCELERATION AND ANGULAR ACCELERATION 22
    2.3.1 Tangential Acceleration and Angular Acceleration 22
    2.3.2 Constant Angular Acceleration 22
    2.4 ROTATIONAL KINETIC ENERGY AND ROTATIONAL INERTIA 23
    2.5 TORQUE 27
    2.5.1 Torque 27
    2.5.2 Lever Arms 30
    2.6 ROTATIONAL EQUILIBRIUM 32
    2.7 ANGULAR MOMENTUM 36
    2.7.1 Angular Momentum 36
    2.7.2 The Vector Nature of Angular Momentum 39
    Chapter 3 Fluids 45
    3.1 STATESOF MATTER 45
    3.2 FLUID FLOW 45
    3.2.1 Types of Fluid Flow 45
    3.2.2 The Ideal Fluid 46
    3.2.3 The Continuity Equation 46
    3.3 BERNOULLI'S EQUATION 48
    3.4 VISCOSITY 51
    3.4.1 Poiseuille's Law 53
    3.4.2 Application of Viscous Flow 53
    3.5 VISCOUS DRAG 54
    3.6 SURFACE TENSION 55
    3.6.1 Application: How Insects Can Walk on the Surface of a Pond 55
    3.6.2 Application: Surfactant in the Lungs 56
    3.6.3 Bubbles 56
    Chapter 4 Elasticity and Oscillations 60
    4.1 ELASTIC DEFORMATIONS OF SOLIDS AND HOOKE'S LAW 60
    4.2 SHEAR AND VOLUME DEFORMATIONS 62
    4.2.1 Shear Deformation 62
    4.2.2 Volume Deformation 64
    4.3 SIMPLE HARMONIC MOTION 65
    4.4 THE PERIOD AND FREQUENCY FOR SHM 68
    4.4.1 Definitions of Period and Frequency 68
    4.4.2 AVertical Mass and Spring 70
    4.5 GRAPHICAL ANALYSIS OF SHM 72
    4.6 THE PENDULUM 73
    4.6.1 Simple Pendulum 73
    4.6.2 Physical Pendulum 74
    4.7 DAMPED OSCILLATIONS, FORCED OSCILLATIONS AND RESONANCE 76
    Chapter 5 Waves 82
    5.1 BASIC PROPERTIES OF WAVES 82
    5.1.1 Waves and Energy Transport 82
    5.1.2 Transverse and Longitudinal Waves 83
    5.1.3 Periodic Waves 85
    5.2 MATHEMATICAL DESCRIPTION OF A WAVE 86
    5.2.1 Traveling Waves 86
    5.2.2 Harmonic Traveling Waves 86
    5.3 GRAPHING WAVES 88
    5.4 PRINCIPLE OF SUPERPOSITION 89
    5.5 REFLECTION AND REFRACTION 90
    5.5.1 Reflection 90
    5.5.2 Change in Wavelength at a Boundary 91
    5.5.3 Refraction 91
    5.6 INTERFERENCE AND DIFFRACTION 92
    5.6.1 Interference 92
    5.6.2 Coherence 93
    5.6.3 Diffraction 94
    5.7 STANDING WAVES 94
    Chapter 6 Sound 100
    6.1 SOUND WAVE 100
    6.1.1 Basic Properties of Sound Wave 100
    6.1.2 Frequency Ranges of Animal Hearing 101
    6.1.3 Attenuation of Sound Waves 101
    6.1.4 Amplitude and Intensity of Sound Waves 102
    6.2 THE HUMAN EAR 105
    6.2.1 Structure of human Ear 105
    6.2.2 Loudness 106
    6.2.3 Pitch 106
    6.2.4 Localization 106
    6.3 BEATS 106
    6.4 THE DOPPLER EFFECT 108
    6.4.1 Moving Source 109
    6.4.2 Moving Observer 109
    6.4.3 Shock Waves 110
    6.5 ECHOLOCATION AND MEDICAL IMAGING 111
    6.5.1 Animal Echolocation 111
    6.5.2 Sonar and Radar 112
    6.5.3 Medical Applications of Ultrasound 112
    Chapter 7 Electrostatic Fields 115
    7.1 ELECTRIC FIELDS 115
    7.1.1 Electric Charge 115
    7.1.2 Coulomb's Law 119
    7.1.3 The Electric Field 122
    7.2 MOTION OF A POINT CHARGE IN A UNIFORM ELECTRIC FIELD 130
    7.3 GAUSS'S LAW FOR ELECTRIC FIELDS 134
    7.3.1 Gauss's Law 134
    7.3.2 Using Gauss's Law to Find the Electric Field 136
    7.4 ELECTRIC POTENTIAL ENERGY 138
    7.5 ELECTRIC POTENTIAL 141
    7.5.1 Electric Potential 141
    7.5.2 The Relationship between Electric Field and Potential 147
    7.6 CAPACITORS 149
    7.7 DIELECTRICS 152
    7.7.1 Dielectrics 152
    7.7.2 Polarization in a Dielectric 153
    7.8 ENERGY STORED IN A CAPACITOR 156
    7.8.1 Energy Stored in a Capacitor 156
    7.8.2 Energy Stored in an Electric Field 158
    Chapter 8 Electric Current and Circuit 163
    8.1 ELECTIC CURRENT 163
    8.1.1 Conventional Current 163
    8.1.2 Electric Current in Liquids and Gases 164
    8.1.3 Application: Current in Neon Signs and Fluorescent Lights 164
    8.2 EMF AND CIRCUITS 165
    8.2.1 Circuit Symbols 165
    8.2.2 EMF in an Electric Circuit 165
    8.2.3 Circuits 166
    8.3 MICROSCOPIC VIEW OF CURRENT IN A METAL: THE FREE-ELECTRON MODEL 167
    8.3.1 The Free-electron Model 167
    8.3.2 Relationship between Current and Drift Velocity 168
    8.4 RESISTANCE AND RESISTIVITY 169
    8.4.1 Resistance and Ohm's Law 169
    8.4.2 Microscopic Origin of Ohm's Law 170
    8.4.3 Resistivity 170
    8.4.4 Resistivity of Water 171
    8.4.5 Resistivity Depends on Temperature 172
    8.4.6 Resistors 173
    8.4.7 Internal Resistance of a Battery 173
    8.5 KIRCHHOFF'S RULES 174
    8.6 SERIES AND PARALLEL CIRCUITS 175
    8.6.1 Resistors in Series 175
    8.6.2 EMFs in Series 176
    8.6.3 Capacitors in Series 176
    8.6.4 Resistors in Parallel 177
    8.6.5 EMFs in Parallel 180
    8.6.6 Capacitors in Parallel 180
    8.7 CIRCUIT ANALYSIS USING KIRCHHOFF'S RULES 181
    8.8 RC CIRCUITS 183
    8.8.1 Charging RC Circuit 183
    8.8.2 Discharging RC Circuit 185
    8.8.3 Application of RC Circuits in Neurons 185
    Chapter 9 Magnetic Forces and Fields 190
    9.1 MAGNETIC FIELDS 190
    9.1.1 Permanent Magnets and Magnetic Dipoles 190
    9.1.2 Magnetic Field Lines 192
    9.1.3 The Earth's Magnetic Field 192
    9.1.4 Application: Magnetotactic Bacteria 193
    9.2 MAGNETIC FORCE ON A POINT CHARGE 193
    9.2.1 Cross Product of Two Vectors 194
    9.2.2 Direction of the Magnetic Force 195
    9.3 MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 199
    9.3.1 Charged Particle Moving Perpendicularly to A Uniform Magnetic Field 199
    9.3.2 Motion of A Charged Particle in A Uniform Magnetic Field: General 203
    9.3.3 A Charged Particle in Crossed E and B Fields 204
    9.4 MAGNETIC FORCE ON A CURRENT- CARRYING WIRE 208
    9.5 TORQUE ON A CURRENT LOOP 210
    9.5.1 Torque on a Magnetic Dipole 211
    9.5.2 Application: Electric Motor 211
    9.5.3 Application: Galvanometer 212
    9.5.4 Application: Audio Speakers 213
    9.6 MAGNETIC FIELD DUE TO AN ELECTRIC CURRENT 214
    9.6.1 Magnetic Field due to a Long Straight Wire 214
    9.6.2 Magnetic Field due to a Circular Current Loop 216
    9.6.3 Magnetic Field due to a Solenoid 217
    9.6.4 Application: Magnetic Resonance Imaging 218
    9.7 AMPèRE'S LAW 218
    9.8 MAGNETIC MATERIALS 219
    9.8.1 Paramagnetism 220
    9.8.2 Ferromagnetism 220
    9.8.3 Diamagnetism 221
    9.8.4 Application: Electromagnets 221
    9.8.5 Application: Magnetic Storage 221
    Chapter 10 Electromagnetic Induction 226
    10.1 MOTIONAL EMF 226
    10.2 FARADAY'S LAW, LENZ'S LAW, EDDY CURRENTS 229
    10.2.1 Faraday's Law 229
    10.2.2 Lenz's Law 233
    10.2.3 Eddy Currents 236
    10.3 INDUCED ELECTRIC FIELDS, INDUCTANCE 237
    10.3.1 Induced Electric Fields 237
    10.3.2 Inductance 238
    10.4 LR CIRCUITS 241
    10.5 MAXWELL'S EQUATIONS AND ELECTROMAGNETIC WAVES 244
    10.5.1 Accelerating Charges Produce Electromagnetic Waves 244
    10.5.2 Maxwell's Equations 245
    10.6 THE ELECTROMAGNETIC SPECTRUM 245
    10.6.1 Visible Light 246
    10.6.2 Infrared 246
    10.6.3 Ultraviolet 247
    10.6.4 Radio Waves 248
    10.6.5 Microwaves 248
    10.6.6 X-Rays and Gamma Rays 249
    Chapter 11 Geometric Optics 253
    11.1 THE FORMATION OF IMAGES THROUGH REFLECTION OR REFRACTION 253
    11.1.1 Real and Virtual Images 253
    11.1.2 Plane Mirrors 254
    11.2 SPHERICAL MIRRORS 254
    11.2.1 Convex Spherical Mirror 254
    11.2.2 Concave Spherical Mirror 256
    11.3 THIN LENSES 256
    11.3.1 Focal Points and Principal Rays 257
    11.3.2 The Magnification and Thin Lens Equations 258
    11.4 LENSES IN COMBINATION 260
    11.4.1 Ray Diagrams for Two Lenses 260
    11.4.2 Transverse Magnification 261
    11.5 THE EYE 263
    11.5.1 Accommodation 264
    11.5.2 Application: Correcting Myopia 264
    11.5.3 Application: Correcting Hyperopia 265
    11.6 COMPOUND MICROSCOPES AND ABERRATIONS OF LENSES AND MIRRORS 268
    11.6.1 Compound Microscope 268
    11.6.2 The Transmission Electron Microscope 269
    11.6.3 Aberrations of Lenses and Mirrors 270
    Chapter 12 Wave Properties of Light 275
    12.1 HUYGENS'S PRINCIPLE 275
    12.1.1 Sources of Light 275
    12.1.2 Wavefronts and Rays 275
    12.1.3 Huygens's Principle 276
    12.2 CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCE 277
    12.2.1 Coherent and Incoherent Sources 277
    12.2.2 Interference of Two Coherent Waves 278
    12.2.3 Phase Difference due to Different Paths 279
    12.3 THIN FILM 281
    12.3.1 Phase Shifts due to Reflection 282
    12.3.2 Problem-Solving Strategy for Thin Films 283
    12.3.3 Thin Films of Air 284
    12.4 YOUNG'S DOUBLE-SLIT EXPERIMENT 287
    12.5 GRATINGS 290
    12.6 DIFFRACTION AND RESOLUTION OF OPTICAL INSTRUMENTS 293
    12.6.1 Diffraction by a Single Slit 293
    12.6.2 Diffraction and Resolution of Optical Instruments 296
    12.7 X-RAY DIFFRACTION 299
    12.8 POLARIZATION 300
    12.8.1 Linear Polarization 300
    12.8.2 Circular Polarization 302
    12.8.3 Polarizers 302
    12.8.4 Polarization by Scattering 304
    12.8.5 Polarization by Reflection 308
    Chapter 13 THE BASIS OF QUANTUM MECHANICS 313
    13.1 QUANTIZATION 313
    13.2 BLACKBODY RADIATION 314
    13.3 THE PHOTOELECTRIC EFFECT 315
    13.3.1 Experimental Results 315
    13.3.2 The Photon 316
    13.3.3 The Electron-Volt 318
    13.3.4 The Photon Theory Explains the Photoelectric Effect 318
    13.3.5 Applications of the Photoelectric Effect 319
    13.4 X-RAY PRODUCTION 319
    13.5 COMPTON SCATTERING 321
    13.6 THE WAVE-PARTICLE DUALITY AND MATTER WAVES 323
    13.6.1 Double-Slit Interference Experiment 323
    13.6.2 Matter Waves 324
    13.6.3 Matter Waves and Probability 327
    13.7 ELECTRON MICROSCOPES 327
    13.8 THE UNCERTAINTY PRINCIPLE 329
    13.8.1 Position-momentum uncertainty principle 329
    13.8.2 Energy-Time Uncertainty Principle 331
    Chapter 14 Nuclear Physics 335
    14.1 NUCLEAR STRUCTURE AND BINDING ENERGY 335
    14.1.1 Nuclear Structure 335
    14.1.2 Sizes of Nuclei 336
    14.1.3 Binding Energy 337
    14.1.4 Binding Energy and Mass Defect 338
    14.1.5 Nuclear Energy Levels 340
    14.2 RADIOACTIVITY 341
    14.2.1 Conservation Laws in Radioactive Decay 342
    14.2.2 Alpha Decay 343
    14.2.3 Beta Decay 344
    14.2.4 Gamma Decay 346
    14.2.5 Other Radioactive Decay Modes 347
    14.3 RADIOACTIVE DECAY RATES AND HALF-LIVES 347
    14.3.1 Radioactivity Decay Law 347
    14.3.2 Application: Radiocarbon Dating 349
    14.4 BIOLOGICAL EFFECTS OF RADIATION 351
    14.4.1 Radiation Dose 351
    14.4.2 Penetration of Radiation 354
    14.4.3 Medical Applications of Radiation 354
    Appendix A English-Chinese Index 359
    Appendix B Table of Selected Nuclides 363
    Answers to Problems 366
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证