0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 原子和分子物理 > 原子和分子光谱学-基础及实际应用

浏览历史

原子和分子光谱学-基础及实际应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
原子和分子光谱学-基础及实际应用
  • 书号:9787030313386
    作者:S.Svanberg
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:612
    字数:744
    语种:
  • 出版社:科学出版社
    出版时间:2011/7/1
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

该书简要介绍了原子和分子的结构、辐射和散射过程,内电子光谱(X射线谱等),光学光谱(含光源,分光仪和探测器等),射频谱,激光,激光光谱和应用,书后有习题和参考文献。该书用不多的篇幅,比较全面的论述了涉及原子和分子光谱学的基本内容,光谱学和激光光谱学方法以及他们的主要应用领域。可作为学习原子和分子光谱,激光光谱,光谱学方法和光谱学应用的教材,供相关专业的大学本科生和研究生使用,也可供专业科技人员阅读和参考。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1. Introduction
    2. Atomic Structure
    2.1 One-Electron Systems
    2.2 Alkali Atoms
    2.3 Magnetic Effects
    2.3.1 Precessional Motion
    2.3.2 Spin-Orbit Interaction
    2.4 General Many-Electron Systems
    2.5 The Influence of External Fields
    2.5.1 Magnetic Fields
    2.5.2 Electric Fields
    2.6 Hyperfine Structure
    2.6.1 Magnetic Hyperfine Structure
    2.6.2 Electric Hyperfine Structure
    2.7 The Influence of External Fields(hfs)
    2.8 Isotopic Shifts
    3. Molecular Structure
    3.1 Electronic Levels
    3.2 Rotational Energy
    3.3 Vibrational Energy
    3.4 Polyatomic Molecules
    3.5 Clusters
    3.6 Other Molecular Structures
    4. Radiation and Scattering Processes
    4.1 Resonance Radiation
    4.2 Spectra Generated by Dipole Transitions
    4.2.1 Atoms
    4.2.2 Molecules
    4.3 Rayleigh and Raman Scattering
    4.4 Raman Spectra
    4.4.1 Vibrational Raman Spectra
    4.4.2 Rotational Raman Spectra
    4.4.3 Vibrational-Rotational Raman Spectra
    4.5 Mie Scattering
    4.6 Atmospheric Scattering Phenomena
    4.7 Comparison Between Different Radiation and Scattering Processes
    4.8 Collision-lnduced Processes
    5. Spectroscopy of Inner Electrons
    5.1 X-Ray Spectroscopy
    5.1.1 X-Ray Emission Spectroscopy
    5.1.2 X-Ray Absorption Spectroscopy
    5.1.3 X-Ray Imaging Applications
    5.2 Photoelectron Spectroscopy
    5.2.1 XPS Techniques and Results
    5.2.2 Chemical Shifts
    5.3 Auger Electron Spectroscopy
    6. Optical Spectroscopy
    6.1 Light Sources
    6.1.1 Line Light Sources
    6.1.2 Continuum Light Sources
    6.1.3 Synchrotron Radiation
    6.1.4 Natural Radiation Sources
    6.2 Spectral Resolution Instruments
    6.2.1 Prism Spectrometers
    6.2.2 Grating Spectrometers
    6.2.3 The Fabry-Pérot Interferometer
    6.2.4 The Fourier Transform Spectrometer
    6.3 Detectors
    6.4 Optical Components and Materials
    6.4.1 Interference Filters and Mirrors
    6.4.2 Absorption Filters
    6.4.3 Polarizers
    6.4.4 Optical Materials
    6.4.5 Influence of the Transmission Medium
    6.5 Optical Methods of Chemical Analysis
    6.5.1 The Beer-Lambert Law
    6.5.2 Atomic Absorption/Emission Spectrophotometry
    6.5.3 Burners,Flames,Sample Preparation and Measurements
    6.5.4 Modified Methods of Atomization
    6.5.5 Multi-Element Analysis
    6.5.6 Molecular Spectrophotometry
    6.5.7 Raman Spectroscopy
    6.6 Optical Remote Sensing
    6.6.1 Atmospheric Monitoring with Passive Techniques
    6.6.2 Land and Water Measurements with Passive Techniques
    6.7 Astrophysical Spectroscopy
    7. Radio-Frequency Spectroscopy
    7.1 Resonance Methods
    7.1.1 Magnetic Resonance
    7.1.2 Atomic-Beam Magnetic Resonance
    7.1.3 Optical Pumping
    7.1.4 Optical Double Resonance
    7.1.5 Level-Crossing Spectroscopy
    7.1.6 Resonance Methods for Liquids and Solids
    7.2 Microwave Radiometry
    7.3 Radio Astronomy
    8. Lasers
    8.1 Basic Principles
    8.2 Coherence
    8.3 Resonators and Mode Structure
    8.4 Fixed-Frequency Lasers
    8.4.1 The Ruby Laser
    8.4.2 Four-Level Lasers
    8.4.3 Pulsed Gas Lasers
    8.4.4 The He-Ne Laser
    8.4.5 Gaseous Ion Lasers
    8.5 Tunable Lasers
    8.5.1 Dye Lasers
    8.5.2 Colour-Centre Lasers
    8.5.3 Tunable Solid-State Lasers
    8.5.4 Tunable CO_2 Lasers
    8.5.5 Semiconductor Lasers
    8.6 Nonlinear Optical Phenomena
    8.7 Ultra-short and Ultra-high-Power Laser Pulse Generation
    8.7.1 Short-Pulse Generation by Mode-Locking
    8.7.2 Generation of Ultra-high Power Pulses
    9. Laser Spectroscopy
    9.1 Basic Principles
    9.1.1 Comparison Between Conventional Light Sources and Lasers
    9.1.2 Saturation
    9.1.3 Excitation Methods
    9.1.4 Detection Methods
    9.1.5 Laser Wavelength Setting
    9.2 Doppler-Limited Techniques
    9.2.1 Absorption Measurements
    9.2.2 Intracavity Absorption Measurements
    9.2.3 Absorption Measurements on Excited States
    9.2.4 Level Labelling
    9.2.5 Two-Photon Absorption Measurements
    9.2.6 Opto-Galvanic Spectroscopy
    9.2.7 Single-Atom and Single-Molecule Detection
    9.2.8 Opto-Acoustic Spectroscopy
    9.3 Optical Double-Resonance and Level-Crossing Experiments with Laser Excitation
    9.4 Time-Resolved Atomic and Molecular Spectroscopy
    9.4.1 Generation of Short Optical Pulses
    9.4.2 Measurement Techniques for Optical Transients
    9.4.3 Background to Lifetime Measurements
    9.4.4 Survey of Methods of Measurement for Radiative Properties
    9.4.5 Quantum-Beat Spectroscopy
    9.5 Ultrafast Spectroscopy
    9.5.1 Ultrafast Measurement Techniques
    9.5.2 Molecular Reaction Dynamics(Femtochemistry)
    9.5.3 Coherent Control
    9.6 High-Power Laser Experiments
    9.6.1 Above Threshold Ionization(ATI)
    9.6.2 High Harmonic Generation
    9.6.3 X-Ray Laser Pumping
    9.6.4 Broadband X-Ray Generation
    9.6.5 Relativistic Effects and Laser Accelerators
    9.6.6 Laser-Nuclear Interactions and Laser-Driven Fusion
    9.7 High-Resolution Laser Spectroscopy
    9.7.1 Spectroscopy on Collimated Atomic and Ionic Beams
    9.7.2 Saturation Spectroscopy and Related Techniques
    9.7.3 Doppler-Free Two-Photon Absorption
    9.8 Cooling and Trapping of Ions and Atoms
    9.8.1 Introduction
    9.8.2 Ion Traps
    9.8.3 Basic Laser Cooling in Traps
    9.8.4 Trapped Ion Spectroscopy
    9.8.5 Atom Cooling and Trapping
    9.8.6 Sub-Recoil Cooling
    9.8.7 Atom Optics
    9.8.8 Bose-Einstein Condensation and Atom LasersŽ
    9.8.9 Ultracold Fermionic Gases
    10 Laser-Spectroscopic Applications
    10.1 Diagnostics of Combustion Processes
    10.1.1 Background
    10.1.2 Laser-Induced Fluorescence and Related Techniques
    10.1.3 Raman Spectroscopy
    10.1.4 Coherent Anti-Stokes Raman Scattering
    10.1.5 Velocity Measurements
    10.2 Laser Remote Sensing of the Atmosphere
    10.2.1 Optical Heterodyne Detection
    10.2.2 Long-Path Absorption Techniques
    10.2.3 Lidar Techniques
    10.3 Laser-Induced Fluorescence and Raman Spectroscopy in Liquids and Solids
    10.3.1 Hydrospheric Remote Sensing
    10.3.2 Vegetation Monitoring
    10.3.3 Monitoring of Surface Layers
    10.4 Laser-Induced Chemical Processes
    10.4.1 Laser-Induced Chemistry
    10.4.2 Laser Isotope Separation
    10.5 Spectroscopic Aspects of Lasers in Medicine
    10.5.1 Thermal Interaction of Laser Light with Tissue
    10.5.2 Photodynamic Tumour Therapy
    10.5.3 Tissue Diagnostics with Laser-Induced Fluorescence
    10.5.4 Scattering Spectroscopy and Tissue Transillumination
    Questions and Exercises
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证