0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 理学 > 0702 物理学 > 高等量子力学简明教程(英文版)

浏览历史

高等量子力学简明教程(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
高等量子力学简明教程(英文版)
  • 书号:9787030253187
    作者:刘连寿
  • 外文书名:
  • 装帧:
    开本:B5
  • 页数:
    字数:240
    语种:
  • 出版社:科学出版社
    出版时间:2009/9/1
  • 所属分类:O41 理论物理学
  • 定价: ¥58.00元
    售价: ¥45.82元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书覆盖了现代高等量子力学所应涵盖的主要内容,包括:量子力学基本原理,算符作为连续变换的生成元,表象理论,角动量理论,路径积分量子化,全同粒子的福克表象,超导的BCS理论,量子比特,贝尔不等式,量子衍射理论,A-B效应,最小测不准与相干态,散射振幅的解析性,束缚态、共振态与散射的关系,半经典近似(WKB近似),相对论性量子力学。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    Chapter 1 Quantum states and physical quantities
    1.1 Quantum states as linear vectors in Hilbert space
    1.1.1 Quantum states as linear vectors
    1.1.2 Axiom of quantum mechanics concerning quantum states
    1.2 Physical quantities as operators in Hilbert space
    1.2.1 Eigenvalue and eigenvector of Hermitian operator
    1.2.2 Orthogonal-normalization condition of eigenvectors
    1.2.3 Axiom of quantum mechanics concerning physical quantities
    1.2.4 Completeness condition of eigenvector system
    1.2.5 Projection operator
    1.2.6 Density operator Pure state and mixed state
    1.3 Representation
    1.3.1 Definition of representation
    1.3.2 Representation transformation
    1.3.3 Enter in and escape from a representation
    1.3.4 Invariances of representation transformation
    1.4 Operators as non-commuting quantities
    1.4.1 Simultaneous measurability of physical quantities
    1.4.2 Commutator algebra
    1.5 Unitary transformation Generator of continuous transformation
    1.5.1 Similar transformation and unitary transformation
    1.5.2 Relation between unitary operator and Hermitian operator
    1.5.3 Continuous transformation Generator
    1.5.4 Space displacement Momentum
    1.5.5 Space rotation Angular momentum
    Chapter 2 Time evolution of microscopic system Schrödinger equation and propagator
    2.1 Time evolution in coordinate representation
    2.2 Time evolution operator in Hilbert space
    2.3 Picture in quantum mechanics
    2.3.1 Definition of picture and picture-transform in quantum mechanics
    2.3.2 Schrödinger picture and Heisenberg picture
    2.3.3 Interaction picture
    2.4 Time evolution in the form of path integral
    2.4.1 Functional integral formula for propagator
    2.4.2 Functional integral as limit of multiple-integral
    2.4.3 Functional integral as sum over path
    2.4.4 Path-integral of Gaussian type
    2.4.5 From path integral to Schrödinger equation
    2.5 Diffraction phenomena in quantum mechanics
    2.5.1 The role of phase in quantum mechanics
    2.5.2 Double-slot diffraction
    2.5.3 Aharonov-Bohm effect Magnetic-flux quantum
    2.6 Symmetry of microscopic system and conservation of physical quantity
    2.6.1 Symmetry of microscopic system
    2.6.2 Conservation of physical quantity
    2.6.3 Parity
    2.6.4 Time reversal
    Chapter 3 Angular momentum
    3.1 General solution of the eigenvalue problem of angular momentum
    3.1.1 The procedure for solving eigenvalue problem directly in Hilbert space
    3.1.2 Solution of the eigenvalue problem of angular momentum
    3.2 Two kinds of angular momentum
    3.2.1 Orbital angular momentum
    3.2.2 Spin
    3.3 Spin 1/2
    3.3.1 Properties of Pauli matrix
    3.3.2 Density matrix of spin 1/2 state Polarization vector
    3.4 Representation of angular momentum
    3.4.1 Reducible and irreducible representations
    3.4.2 Irreducible tensor operator
    3.4.3 Property of D function
    3.5 Addition of angular momentum Clebsch-Gordan coefficients
    3.5.1 Addition of angular momentum
    3.5.2 Clebsch-Gordan coefficients
    3.5.3 Addition of D function
    Chapter 4 Multi-particle system
    4.1 Axiom on indistinguishability of identical particles
    4.2 Fock representation of multi-particle state-Discrete spectrum
    4.2.1 The representation basis
    4.2.2 Basic operators
    4.2.3 Action of basic operators on representation basis
    4.2.4 Representation- and canonical-transformations of annihilation and creation operators
    4.2.5 Operators of physical quantities in multi-particle system
    4.3 Fock representation for continuous spectrum
    4.3.1 Second quantization
    4.4 Time evolution in Fock representation
    4.5 Theory of superconductivity
    4.5.1 The BCS theory of superconductivity
    4.6 Two-state system
    4.6.1 Two-electron system
    4.6.2 Quantum bit Bell inequality
    Chapter 5 Uncertainty relation Coherent state
    5.1 Uncertainty relation Minimum-uncertainty state
    5.1.1 Uncertainty relation
    5.1.2 Minimum-uncertainty state
    5.1.3 Schwartz inequality
    5.2 Harmonic oscillator
    5.2.1 Solution of eigenvalue problem
    5.2.2 Time evolution of harmonic oscillator in Heisenberg picture
    5.3 Coherent state
    5.3.1 Definition of coherent state
    5.3.2 Properties of coherent state
    5.3.3 Representation with coherent states as basis
    5.3.4 Production of coherent state
    5.3.5 Coherent state in coordinate representation
    5.3.6 Displacement,rotation and squeeze operators for coherent states
    Chapter 6 One-dimensional problem Bound states and resonances
    6.1 Three-dimensional scattering and one-dimensional transmission and reflection
    6.2 Piecewise constant potential
    6.2.1 Potential box
    6.2.2 Rectangular potential well
    6.3 Poles of scattering amplitude in the complex E plane
    6.3.1 Scattering resonance
    6.3.2 Poles of scattering amplitude on negative E axis Discrete energy levels
    6.3.3 Poles of scattering amplitude in complex E plane Breit-Wigner formula
    6.4 Space-time evolution of one-dimensional scattering
    6.4.1 Wave packet
    6.4.2 One-dimensional wave packet scattering
    6.4.3 Energy-time uncertainty relation
    6.5 Slowly-varying potential Semi-classical (WKB) approximation
    6.5.1 Canonical and path-integral quantizations
    6.5.2 The semi-classical approximation (WKB approximation)
    6.5.3 Application of semi-classical approximation
    6.6 The connection formulae for WKB approximation
    Chapter 7 Three-dimensional Scattering
    7.1 Asymptotic form of scattering Differential cross section
    7.2 Formal theory of scattering
    7.2.1 Lippmann-Schwinger Equation
    7.2.2 An alternative derivation of L-S equation
    7.2.3 L-S equation in coordinate representation
    7.2.4 Properties of scattering state
    7.2.5 Scattering matrix
    7.3 Partial wave phase shift
    7.3.1 Wave function of free particle in spherical coordinate
    7.3.2 Spherical Hankel and spherical Neumann functions
    7.3.3 Partial wave expansion of scattering amplitude
    7.3.4 Three dimensional square well
    7.4 Elastic and inelastic scattering
    7.4.1 Pure elastic scattering
    7.4.2 Elastic scattering in the presence of inelastic processes
    7.4.3 Optical theorem
    7.5 Approximation methods for high energy scattering
    7.5.1 Born approximation
    7.5.2 Eikonal approximation
    7.6 Wigner-Eckart theorem
    Chapter 8 Relativistic quantum mechanics
    8.1 Klein-Gordan equation and the difficulty of negative probability
    8.2 Dirac equation
    8.3 The spin of Dirac particle
    8.4 Free particle solution of Dirac equation
    8.5 Dirac equation in electro-magnetic field Magnetic moment of electron
    Hints to Selected Exercises
    H.1 Quantum states and physical quantities
    H.2 Time evolution of microscopic system
    H.3 Angular momentum
    H.4 Multi-particle system
    H.5 Uncertainty relation Coherent state
    H.6 One-dimensional problem Bound states and resonances
    H.7 Three-dimensional Scattering
    H.8 Relativistic quantum mechanics
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证