0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 应用物理学 > 电磁噪声和量子光学测量(第二版)

浏览历史

电磁噪声和量子光学测量(第二版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
电磁噪声和量子光学测量(第二版)
  • 书号:9787030313430
    作者:H.A.Haus
  • 外文书名:
  • 装帧:
    开本:B5
  • 页数:584
    字数:708
    语种:
  • 出版社:科学出版社
    出版时间:2011/7/1
  • 所属分类:O44 电磁学、电动力学
  • 定价: ¥98.00元
    售价: ¥77.42元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

这本书内容涉及光学的不同领域,包括:干涉测量术,全息术,付里叶光学和非线性光学现象等。作为本书的一大特色是作者把它们统一归纳到相干光学的范畴内,从相干性基本原理出发,详细论述了它们的理论和应用。书中提供了当代有关相干光学的最新研究成果,特别是有关非线性光学若干现代课题的研究进展。此外,作者在书中收集了大量例题,练习题包括它们完全解答,相信这将有助于读者加深知识的理解。为适应科学研究的飞速发展,本书的这一完全修订版已经在原书基础上做了内容的更新和扩充。本书是为工作在这一领域的研究生和高年级大学生写的,也是活跃在这一领域的科学工作者的一本很好的参考书。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Introduction
    1.Maxwell's Equations,Power,and Energy
    1.1 Maxwell's Field Equations
    1.2 Poynting's Theorem
    1.3 Energy and Power Relations and Symmetry of the Tensor *
    1.4 Uniqueness Theorem
    1.5 The Complex Maxwell's Equations
    1.6 Operations with Complex Vectors
    1.7 The Complex Poynting Theorem
    1.8 The Reciprocity Theorem
    1.9 Summary
    Problems
    Solutions
    2.Waveguides and Resonators
    2.1 The Fundamental Equations of Homogeneous Isotropic Waveguides
    2.2 Transverse Electromagnetic Waves
    2.3 Transverse Magnetic Waves
    2.4 Transverse Electric Waves
    2.4.1 Mode Expansions
    2.5 Energy,Power,and Energy Velocity
    2.5.1 The Energy Theorem
    2.5.2 Energy Velocity and Group Velocity
    2.5.3 Energy Relations for Waveguide Modes
    2.5.4 A Perturbation Example
    2.6 The Modes of a Closed Cavity
    2.7 Real Character of Eigenvalues and Orthogonality of Modes
    2.8 Electromagnetic Field Inside a Closed Cavity with Sources
    2.9 Analysis of Open Cavity
    2.10 Open Cavity with Single Input
    2.10.1 The Resonator and the Energy Theorem
    2.10.2 Perturbation Theory and the Generic Form of the Impedance Expression
    2.11 Reciprocal Multiports
    2.12 Simple Model of Resonator
    2.13 Coupling Between Two Resonators
    2.14 Summary
    Problems
    Solutions
    3.Diffraction,Dielectric Waveguides,Optical Fibers,and the Kerr Effect
    3.1 Free-Space Propagation and Diffraction
    3.2 Modes in a Cylindrical Piecewise Uniform Dielectric
    3.3 Approximate Approach
    3.4 Perturbation Theory
    3.5 Propagation Along a Dispersive Fiber
    3.6 Solution of the Dispersion Equation for a Gaussian Pulse
    3.7 Propagation of a Polarized Wave in an Isotropic Kerr Medium
    3.7.1 Circular Polarization
    3.8 Summary
    Problems
    Solutions
    4.Shot Noise and Thermal Noise
    4.1 The Spectrum of Shot Noise
    4.2 The Probability Distribution of Shot Noise Events
    4.3 Thermal Noise in Waveguides and Transmission Lines
    4.4 The Noise of a Lossless Resonator
    4.5 The Noise of a Lossy Resonator
    4.6 Langevin Sources in a Waveguide with Loss
    4.7 Lossy Linear Multiports at Thermal Equilibrium
    4.8 The Probability Distribution of Photons at Thermal Equilibrium
    4.9 Gaussian Amplitude Distribution of Thermal Excitations
    4.10 Summary
    Problems
    Solutions
    5.Linear Noisy Multiports
    5.1 Available and Exchangeable Power from a Source
    5.2 The Stationary Values of the Power Delivered by a Noisy Multiport and the Characteristic Noise Matrix
    5.3 The Characteristic Noise Matrix in the Admittance Representation Applied to a Field Effect Transistor
    5.4 Transformations of the Characteristic Noise Matrix
    5.5 Simplified Generic Forms of the Characteristic Noise Matrix
    5.6 Noise Measure of an Amplifier
    5.6.1 Exchangeable Power
    5.6.2 Noise Figure
    5.6.3 Exchangeable Power Gain
    5.6.4 The Noise Measure and Its Optimum Value
    5.7 The Noise Measure in Terms of Incident and Reflected Waves
    5.7.1 The Exchangeable Power Gain
    5.7.2 Excess Noise Figure
    5.8 Realization of Optimum Noise Performance
    5.9 Cascading of Amplifiers
    5.10 Summary
    Problems
    Solutions
    6.Quantum Theory of Waveguides and Resonators
    6.1 Quantum Theory of the Harmonic Oscillator
    6.2 Annihilation and Creation Operators
    6.3 Coherent States of the Electric Field
    6.4 Commutator Brackets,Heisenberg's Uncertainty Principle and Noise
    6.5 Quantum Theory of an Open Resonator
    6.6 Quantization of Excitations on a Single-Mode Waveguide
    6.7 Quantum Theory of Waveguides with Loss
    6.8 The Quantum Noise of an Amplifier with a Perfectly Inverted Medium
    6.9 The Quantum Noise of an Imperfectly Inverted Amplifier Medium
    6.10 Noise in a Fiber with Loss Compensated by Gain
    6.11 The Lossy Resonator and the Laser Below Threshold
    6.12 Summary
    Problems
    Solutions
    7.Classical and Quantum Analysis of Phase-Insensitive Systems
    7.1 Renormalization of the Creation and Annihilation Operators
    7.2 Linear Lossless Multiports in the Classical and Quantum Domains
    7.3 Comparison of the Schrödinger and Heisenberg Formulations of Lossless Linear Multiports
    7.4 The Schrödinger Formulation and Entangled States
    7.5 Transformation of Coherent States
    7.6 Characteristic Functions and Probability Distributions
    7.6.1 Coherent State
    7.6.2 Bose-Einstein Distribution
    7.7 Two-Dimensional Characteristic Functions and the Wigner Distribution
    7.8 The Schrödinger Cat State and Its Wigner Distribution
    7.9 Passive and Active Multiports
    7.10 Optimum Noise Measure of a Quantum Network
    7.11 Summary
    Problems
    Solutions
    8.Detection
    8.1 Classical Description of Shot Noise and Heterodyne Detection
    8.2 Balanced Detection
    8.3 Quantum Description of Direct Detection
    8.4 Quantum Theory of Balanced Heterodyne Detection
    8.5 Linearized Analysis of Heterodyne Detection
    8.6 Heterodyne Detection of a Multimodal Signal
    8.7 Heterodyne Detection with Finite Response Time of Detector
    8.8 The Noise Penalty of a Simultaneous Measurement of Two Noncommuting Observables
    8.9 Summary
    Problems
    Solutions
    9.Photon Probability Distributions and Bit-Error Rate of a Channel with Optical Preamplification
    9.1 Moment Generating Functions
    9.1.1 Poisson Distribution
    9.1.2 Bose-Einstein Distribution
    9.1.3 Composite Processes
    9.2 Statistics of Attenuation
    9.3 Statistics of Optical Preamplification with Perfect Inversion
    9.4 Statistics of Optical Preamplification with Incomplete Inversion
    9.5 Bit-Error Rate with Optical Preamplification
    9.5.1 Narrow-Band Filter,Polarized Signal,and Noise
    9.5.2 Broadband Filter,Unpolarized Signal
    9.6 Negentropy and Information
    9.7 The Noise Figure of Optical Amplifiers
    9.8 Summary
    Problems
    Solutions
    10.Solitons and Long-Distance Fiber Communications
    10.1 The Nonlinear SchrSdinger Equation
    10.2 The First-Order Soliton
    10.3 Properties of Solitons
    10.4 Perturbation Theory of Solitons
    10.5 Amplifier Noise and the Gordon-Haus Effect
    10.6 Control Filters
    10.7 Erbium-Doped Fiber Amplifiers and the Effect of Lumped Gain
    10.8 Polarization
    10.9 Continuum Generation by Soliton Perturbation
    10.10 Summary
    Problems
    Solutions
    11.Phase-Sensitive Amplification and Squeezing
    11.1 Classical Analysis of Parametric Amplification
    11.2 Quantum Analysis of Parametric Amplification
    11.3 The Nondegenerate Parametric Amplifier as a Model of a Linear Phase-Insensitive Amplifier
    11.4 Classical Analysis of Degenerate Parametric Amplifier
    11.5 Quantum Analysis of Degenerate Parametric Amplifier
    11.6 Squeezed Vacuum and Its Homodyne Detection
    11.7 Phase Measurement with Squeezed Vacuum
    11.8 The Laser Resonator Above Threshold
    11.9 The Fluctuations of the Photon Number
    11.10 The Schawlow-Townes Linewidth
    11.11 Squeezed Radiation from an Ideal Laser
    11.12 Summary
    Problems
    Solutions
    12.Squeezing in Fibers
    12.1 Quantization of Nonlinear Waveguide
    12.2 The x Representation of Operators
    12.3 The Quantized Equation of Motion of the Kerr Effect in the x Representation
    12.4 Squeezing
    12.5 Generation of Squeezed Vacuum with a Nonlinear Interferometer
    12.6 Squeezing Experiment
    12.7 Guided-Acoustic-Wave Brillouin Scattering
    12.8 Phase Measurement Below the Shot Noise Level
    12.9 Generation of Schrödinger Cat State via Kerr Effect
    12.10 Summary
    Problems
    Solutions
    13.Quantum Theory of Solitons and Squeezing
    13.1 The Hamiltonian and Equations of Motion of a Dispersive Waveguide
    13.2 The Quantized Nonlinear Schrödinger Equation and Its Linearization
    13.3 Soliton Perturbations Projected by the Adjoint
    13.4 Renormalization of the Soliton Operators
    13.5 Measurement of Operators
    13.6 Phase Measurement with Soliton-like Pulses
    13.7 Soliton Squeezing in a Fiber
    13.8 Summary
    Problems
    Solutions
    14.Quantum Nondemolition Measurements and the'Collapse'of the Wave Function
    14.1 General Properties of a QND Measurement
    14.2 A QND Measurement of Photon Number
    14.3 'Which Path'Experiment
    14.4 The'Collapse'of the Density Matrix
    14.5 Two Quantum Nondemolition Measurements in Cascade
    14.6 The Schrödinger Cat Thought Experiment
    14.7 Summary
    Problems
    Solutions
    Epilogue
    Appendices
    A.1 Phase Velocity and Group Velocity of a Gaussian Beam
    A.2 The Hermite Gaussians and Their Defining Equation
    A.2.1 The Defining Equation of Hermite Gaussians
    A.2.2 0rthogonality Property of Hermite Gaussian Modes
    A.2.3 The Generating Function and Convolutions of Hermite Gaussians
    A.3 Recursion Relations of Bessel Functions
    A.4 Brief Review of Statistical Function Theory
    A.5 The Different Normalizations of Field Amplitudes and of Annihilation Operators
    A.5.1 Normalization of Classical Field Amplitudes
    A.5.2 Normalization of Quantum Operators
    A.6 Two Alternative Expressions for the Nyquist Source
    A.7 Wave Functions and Operators in the n Representation
    A.8 Heisenberg's Uncertainty Principle
    A.9 The Quantized Open-Resonator Equations
    A.10 Density Matrix and Characteristic Functions
    A.10.1 Example 1.Density Matrix of Bose-Einstein State
    A.10.2 Example 2.Density Matrix of Coherent State
    A.11 Photon States and Beam Splitters
    A.12 The Baker-Hausdorff Theorem
    A.12.1 Theorem 1
    A.12.2 Theorem 2
    A.12.3 Matrix Form of Theorem 1
    A.12.4 Matrix Form of Theorem 2
    A.13 The Wigner Function of Position and Momentum
    A.14 The Spectrum of Non-Return-to-Zero Messages
    A.15 Various Transforms of Hyperbolic Secants
    A.16 The Noise Sources Derived from a Lossless Multiport with Suppressed Terminals
    A.17 The Noise Sources of an Active System Derived from Suppression of Ports
    A.18 The Translation Operator and the Transformation of Coherent States from the β Representation to the x Representation
    A.19 The Heisenberg Equation in the Presence of Dispersion
    A.20 Gaussian Distributions and Their e^-1/2 Loci
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证