本书介绍生态模型的数学处理方法,特别是描述生物扩散的非线性抛物型以及椭圆型方程组方面的最新进展。 全书内容包括数学生态学模型的建立、偏微分方程组的上下解方法及其应用、Turing不稳定和相应的模式生成、种群入侵和自由边界以及传染病的扩散等。各章配备了难易兼顾的例题和习题,有丰富的应用实例和插图。书末还附有Matlab画图的基本方法和不动点定理简介,便于读者进行数值模拟和查阅。 本书可作为高等学校数学类专业本科生及相关专业研究生的教材,也可供高等院校大学生教师和科研人员、工程技术人员参考。
样章试读
目录
- 《生物数学丛书》序
前言
第1章 绪论
1.1 数学生态学简介
1.2 常微分方程种群模型
1.2.1 单种群模型
1.2.2 两种群模型
1.3 偏微分方程种群模型
1.4 总结与讨论
习题1
第2章 稳定性和混沌
2.1 稳定性
2.1.1 线性自治系统的稳定性
2.1.2 非线性自治系统的线性近似法
2.1.3 非线性自治系统的Lyapunov直接法
2.1.4 半群理论和紧算子的谱
2.1.5 非线性反应扩散问题的线性近似法
2.1.6 非线性反应扩散问题的Lyapunov直接法
2.2 分支与混沌
2.2.1 分支简介
2.2.2 混沌简介
习题2
第3章 上下解方法
3.1 单个方程的上下解方法举例
3.2 拟单调非减问题的上下解方法
3.3 混合拟单调的上下解方法
3.4 一类拟线性方程组的上下解方法
习题3
第4章 上下解方法在种群系统中的应用
4.1 具阶段结构的两种群竞争模型
4.1.1 存在唯一性
4.1.2 全局稳定性
4.2 具交错扩散的互惠模型
4.2.1 弱耦合互惠系统
4.2.2 上下解的构造
4.2.3 真实解的存在性
4.2.4 数值模拟
习题4
第5章 种群系统中的Turing不稳定
5.1 什么是Turing不稳定
5.2 一维空间中由自由扩散引起的Turing不稳定
5.3 n维空间中由自由扩散引起的Turing不稳定
5.4 L-V模型中的Turing不稳定
5.5 多维空间中由交错扩散引起的Turing不稳定
5.6 蚜虫-天敌-杀虫剂模型
习题5
第6章 生态模型的空间模式
6.1 空间模式问题的起源
6.2 一类三种群食物链模型的空间模式
6.3 非均匀稳态解
6.3.1 先验估计
6.3.2 非均匀正稳态解的存在性
6.4 总结与讨论
习题6
第7章 增长区域上的种群扩散模型
7.1 增长区域问题的引入
7.2 增长区域上反应扩散方程的推导
7.3 解的渐近性
7.3.1 区域有限增长
7.3.2 区域无限增长
7.4 数值模拟
7.5 总结与讨论
习题7
第8章 种群入侵与自由边界
8.1 自由边界的引入
8.2 全局解的存在唯一性
8.3 扩张-灭绝二择一
8.4 扩张速度
8.5 双自由边界情形
8.6 具自由边界的互惠模型
8.6.1 解的局部存在性和唯一性
8.6.2 弱互惠下的解的全局存在性
8.6.3 强互惠下的全局解和非全局解
8.7 具自由边界的竞争模型
8.8 总结与讨论
习题8
第9章 非均质区域上的传染病扩散
9.1 固定区域上的SIS反应扩散问题
9.2 稳定性
9.3 自由边界问题
9.4 基本再生数
9.5 传染病消退
9.6 传染病蔓延
附录一 数值模拟的基本方法
A.1 Euler折线法
A.2 一维反应扩散问题的数值算法
A.3 一维反应扩散问题的数值模拟
A.4 增长区域上的反应扩散问题模拟
A.5 自由边界问题模拟
附录二 不动点定理及其应用
B.1 压缩映像原理
B.2 Schauder不动点定理
B.3 Leray-Schauder不动点定理
B.4 拟线性椭圆型方程
B.5 拟线性抛物型方程
参考文献
索引