全部商品分类
>
时滞递归神经网络的状态估计理论与应用
通常一个用于解决复杂非线性问题的人工神经网络模型具有大量的神经元,并且它们之间的连接是非常复杂的。在实际中人们很难完全知道每个神经元的状态信息,因此对时滞递归神经网络的状态估计问题的研究具有非常重要的意义。本书主要介绍有关时滞递归神经网络的状态估计理论和应用的最新成果,运用多种不同的方法(如时滞划分方法、松弛变量方法和多重积分不等式方法等)处理三类时滞神经网络的状态估计问题,给出了状态估计器的设计算法,并通过大量的例子来验证本书的理论成果。最后,讨论了理论成果在反馈控制中的应用。
样章试读
- 暂时还没有任何用户评论
全部咨询(共0条问答)
- 暂时还没有任何用户咨询内容