0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 方程/动力系统 > 偏微分方程引论 (第二版)

浏览历史

偏微分方程引论  (第二版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
偏微分方程引论 (第二版)
  • 书号:9787030313881
    作者:Michael Renardy
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:448
    字数:551
    语种:
  • 出版社:科学出版社
    出版时间:2011/7/28
  • 所属分类:
  • 定价: ¥178.00元
    售价: ¥140.62元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书内容包括:偏微分方程的特征线、守恒定律、最大值原理、广义函数、函数空间、算子理论、线性椭圆方程、非线性椭圆方程等。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Series Preface
    Preface
    1 Introduction
    1.1 Basic Mathematical Questions
    1.1.1 Existence
    1.1.2 Multiplicity
    1.1.3 Stability
    1.1.4 Linear Systems of ODEs and Asymptotic Stability
    1.1.5 Well-Posed Problems
    1.1.6 Representations
    1.1.7 Estimation
    1.1.8 Smoothness
    1.2 Elementary Partial Differential Equations
    1.2.1 Laplace's Equation
    1.2.2 The Heat Equation
    1.2.3 The Wave Equation
    2 Characteristics
    2.1 Classification and Characteristics
    2.1.1 The Symbol of a Differential Expression
    2.1.2 Scalar Equations of Second Order
    2.1.3 Higher-Order Equations and Systems
    2.1.4 Nonlinear Equations
    2.2 The Cauchy-Kovalevskaya Theorem
    2.2.1 Real Analytic Punctions
    2.2.2 Majorization
    2.2.3 Statement and Proof of the Theorem
    2.2.4 Reduction of General Systems
    2.2.5 A PDE without Solutions
    2.3 Holmgren's Uniqueness Theorem
    2.3.1 An Outline of the Main Idea
    2.3.2 Statement and Proof of the Theorem
    2.3.3 The Weierstrafi Approximation Theorem
    3 Conservation Laws and Shocks
    3.1 Systems in One Space Dimension
    3.2 Basic Definitions and Hypotheses
    3.3 Blowup of Smooth Solutions
    3.3.1 Single Conservation Laws
    3.3.2 The p System
    3.4 Weak Solutions
    3.4.1 The Rankine-Hugoniot Condition
    3.4.2 Multiplicity
    3.4.3 The Lax Shock Condition
    3.5 Riemann Problems
    3.5.1 Single Equations
    3.5.2 Systems
    3.6 Other Selection Criteria
    3.6.1 The Entropy Condition
    3.6.2 Viscosity Solutions
    3.6.3 Uniqueness
    4 Maximum Principles
    4.1 Maximum Principles of Elliptic Problems
    4.1.1 The Weak Maximum Principle
    4.1.2 The Strong Maximum Principle
    4.1.3 A Priori Bounds
    4.2 An Existence Proof for the Dirichlet Problem
    4.2.1 The Dirichlet Problem on a Ball
    4.2.2 Subharmonic Functions
    4.2.3 The Arzela-Ascoli Theorein
    4.2.4 Proof of Theorem 4.13
    4.3 Radial Symmetry
    4.3.1 Two Auxiliary Lemmas
    4.3.2 Proof of the Theorem
    4.4 Maximum Principles for Parabolic Equations
    4.4.1 The Weak Maximum Principle
    4.4.2 The Strong Maximum Principle
    5 Distributions
    5.1 Test Functions and Distributions
    5.1.1 Motivation
    5.1.2 Test Functions
    5.1.3 Distributions
    5.1.4 Localization and Regularization
    5.1.5 Convergence of Distributions
    5.1.6 Tempered Distributions
    5.2 Derivatives and Integrals
    5.2.1 Basic Definitions
    5.2.2 Examples
    5.2.3 Primitives and Ordinary Differential Equations
    5.3 Convolutions and Fundamental Solutions
    5.3.1 The Direct Product of Distributions
    5.3.2 Convolution of Distributions
    5.3.3 Fundamental Solutions
    5.4 The Fourier Transform
    5.4.1 Fourier Transforms of Test Functions
    5.4.2 Fourier Transforms of Tempered Distributions
    5.4.3 The Fundamental Solution for the Wave Equation
    5.4.4 Fourier Transform of Convolutions
    5.4.5 Laplace Transforms
    5.5 Green's Functions
    5.5.1 Boundary-Value Problems and their Adjoints
    5.5.2 Green's Functions for Boundary-Value Problems
    5.5.3 Boundary Integral Methods
    6 Function Spaces
    6.1 Banach Spaces and Hilbert Spaces
    6.1.1 Banach Spaces
    6.1.2 Examples of Banach Spaces
    6.1.3 Hilbert Spaces
    6.2 Bases in Hilbert Spaces
    6.2.1 The Existence of a Basis
    6.2.2 Fourier Series
    6.2.3 Orthogonal Polynomials
    6.3 Duality and Weak Convergence
    6.3.1 Bounded Linear Mappings
    6.3.2 Examples of Dual Spaces
    6.3.3 The Hahn-Banach Theorem
    6.3.4 The Uniform Boundedness Theorem
    6.3.5 Weak Convergence
    7 Sobolev Spaces
    7.1 Basic Definitions
    7.2 Characterizations of Sobolev Spaces
    7.2.1 Some Comments on the Domain Ω
    7.2.2 Sobolev Spaces and Fourier Transform
    7.2.3 The Sobolev Imbedding Theorem
    7.2.4 Compactness Properties
    7.2.5 The Trace Theorem
    7.3 Negative Sobolev Spaces and Duality
    7.4 Technical Results
    7.4.1 Density Theorems
    7.4.2 Coordinate Transformations and Sobolev Spaces on Manifolds
    7.4.3 Extension Theorems
    7.4.4 Problems
    8 Operator Theory
    8.1 Basic Definitions and Examples
    8.1.1 Operators
    8.1.2 Inverse Operators
    8.1.3 Bounded Operators,Extensions
    8.1.4 Examples of Operators
    8.1.5 Closed Operators
    8.2 The Open Mapping Theorem
    8.3 Spectrum and Resolvent
    8.3.1 The Spectra of Bounded Operators
    8.4 Symmetry and Self-adjointness
    8.4.1 The Adjoint Operator
    8.4.2 The Hilbert Adjoint Operator
    8.4.3 Adjoint Operators and Spectral Theory
    8.4.4 Proof of the Bounded Inverse Theorem for Hilbert Spaces
    8.5 Compact Operators
    8.5.1 The Spectrum of a Compact Operator
    8.6 Sturm-Liouvillc Boundary-Value Problems
    8.7 The Fredholm Index
    9 Linear Elliptic Equations
    9.1 Definitions
    9.2 Existence and Uniqueness of Solutions of the Dirichlet Problem
    9.2.1 The Dirichlet Problem-Types of Solutions
    9.2.2 The Lax-Milgram Lemma
    9.2.3 G*rding's Inequality
    9.2.4 Existence of Weak Solutions
    9.3 Eigenfunction Expansions
    9.3.1 Fredholm Theory
    9.3.2 Eigenfunction Expansions
    9.4 General Liuear Elliptic Problems
    9.4.1 The Neumann Problem
    9.4.2 The Complementing Condition for Elliptic Systems
    9.4.3 The Adjoint Boundary-Value Problem
    9.4.4 Agmon's Condition and Coercive Problems
    9.5 Interior Regularity
    9.5.1 Difference Quotients
    9.5.2 Second-Order Scalar Equations
    9.6 Boundary Regularity
    10 Nonlinear Elliptic Equations
    10.1 Perturbation Results
    10.1.1 The Banach Contraction Principle and the Implicit Function Theorem
    10.1.2 Applications to Elliptic PDEs
    10.2 Nonlinear Variational Problems
    10.2.1 Convex problems
    10.2.2 Nonconvex Problems
    10.3 Nonlinear Operator Theory Methods
    10.3.1 Mappings on Finite-Dimensional Spaces
    10.3.2 Monotone Mappings on Banach Spaces
    10.3.3 Applications of Monotone Operators to Nonlinear PDEs
    10.3.4 Nemytskii Operators
    10.3.5 Pseudo-monotone Operators
    10.3.6 Application to PDEs
    11 Energy Methods for Evolution Problems
    11.1 Parabolic Equations
    11.1.1 Banach Space Valued Functions and Distributions
    11.1.2 Abstract Parabolic Initial-Value Problems
    11.1.3 Applications
    11.1.4 Regularity of Solutions
    11.2 Hyperbolic Evolution Problems
    11.2.1 Abstract Second-Order Evolution Problems
    11.2.2 Existence of a Solution
    11.2.3 Uniqueness of the Solution
    11.2.4 Continuity of the Solution
    12 Semigroup Methods
    12.1 Semigroups and Infinitesimal Generators
    12.1.1 Strongly Continuous Semigroups
    12.1.2 The Infinitesimal Generator
    12.1.3 Abstract ODEs
    12.2 The Hille-Yosida Theorem
    12.2.1 The Hille-Yosida Theorem
    12.2.2 The Lumer-Phillips Theorem
    12.3 Applications to PDEs
    12.3.1 Symmetric Hyperbolic Systems
    12.3.2 The Wave Equation
    12.3.3 The Schrödinger Equation
    12.4 Analytic Semigroups
    12.4.1 Analytic Semigroups and Their Generators
    12.4.2 Fractional Powers
    12.4.3 Perturbations of Analytic Semigroups
    12.4.4 Regularity of Mild Solutions
    A References
    A.1 Elementary Texts
    A.2 Basic Graduate Texts
    A.3 Specialized or Advanced Texts
    A.4 Multivolume or Encyclopedic Works
    A.5 Other References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证