0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 应用数学 > 大维随机矩阵的谱分析(英文版)

相同语种的商品

浏览历史

大维随机矩阵的谱分析(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
大维随机矩阵的谱分析(英文版)
  • 书号:7030177665
    作者:白志东等
  • 外文书名:Spectral Analysis of Large Dimensional Random Matrices
  • 装帧:精装
    开本:B5
  • 页数:408
    字数:481000
    语种:英文
  • 出版社:科学出版社
    出版时间:2006-09-20
  • 所属分类:O15 代数、数论、组合理论
  • 定价: ¥80.00元
    售价: ¥63.20元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1 Introduction
    1.1 Large Dimensional Data Analysis
    1.2 Random Matrix Theory
    1.2.1 Spectral Analysis of Large Dimensional Random Matrices
    1.2.2 Limits of Extreme Eigenvalues
    1.2.3 Convergence Rate of ESD
    1.2.4 Circular Law
    1.2.5 CLT of Linear Spectral Statisticslinear spectral statistics
    1.2.6 Limiting Distributions of Extreme Eigenvalues and Spacings
    1.3 Methodologies
    1.3.1 Moment Method
    1.3.2 Stieltjes Transform
    1.3.3 Orthogonal Polynomial Decomposition
    2 Wigner Matrices and Semicircular Law
    2.1 Semicircular Law by the Moment Method
    2.1.1 Moments of the Semicircular Law
    2.1.2 Some Lemmas of Combinatorics
    2.1.3 Semicircular Law for iid Case
    2.2 Generalizations to the Non-iid Case
    2.2.1 Proof of Theorem 2.9
    2.3 Semicircular Law by Stieltjes Transform
    2.3.1 Stieltjes Transform of Semicircular Law
    2.3.2 Proof of Theorem 2.9
    3 Sample Covariance Matrices, Marˇcenko-Pastur Law
    3.1 MP Law for iid Case
    3.1.1 Moments of the MP Law
    3.1.2 Some Lemmas on Graph Theory and Combinatorics
    3.1.3 MP Law for iid Case
    3.2 Generalization to the Non-iid Case
    3.3 Proof of Theorem 3.9 by Stieltjes Transform
    3.3.1 Stieltjes Transform of MP Law
    3.3.2 Proof of Theorem 3.9
    4 Product of Two Random Matrices
    4.1 Some Graph Theory and Combinatoric Results
    4.2 Existence of the ESD of SnTn
    4.2.1 Truncation of the ESD of Tn
    4.2.2 Truncation, Centralization and Rescaling of the X-variables
    4.2.3 Proof of Theorem 4.3
    4.3 LSD of F matrix
    4.3.1 General Formula for the Product
    4.3.2 LSD of Multivariate F Matrices
    4.4 Proof of Theorem 4.5
    4.4.1 Truncation and Centralization
    4.4.2 Proof by Stieltjes Transform
    5 Limits of Extreme Eigenvalues
    5.1 Limit of Extreme Eigenvalues of the Wigner Matrix
    5.1.1 Sufficiency of Conditions of Theorem 5.1
    5.1.2 Necessity of Conditions of Theorem 5.1
    5.2 Limits of Extreme Eigenvalues of Sample Covariance Matrix
    5.2.1 Proof of Theorem 5.10
    5.2.2 The Proof of Theorem 5.11
    5.2.3 Necessity of the Conditions
    5.3 Miscellanies
    6 Spectrum Separation
    6.1 What is Spectrum Separation
    6.1.1 Mathematical Tools
    6.2 Proof of (1)
    6.2.1 Truncation and Some Simple Facts
    6.2.2 A Preliminary Convergence Rate
    6.2.3 Convergence of sn-Esn
    6.2.4 Convergence of Expected Value
    6.2.5 Completing the Proof
    6.3 Proof of (2)
    6.4 Proof of (3)
    6.4.1 Convergence of a Random Quadratic Form
    6.4.2 Spread of Eigenvalues
    6.4.3 Dependence on y
    6.4.4 Completing the Proof of (3)
    7 Semicircle Law for Hadamard Products
    7.1 Renormalized Sample Covariance Matrix
    7.2 Sparse Matrix and Hadamard Product
    7.3 Proof of Theorem 7.4
    7.3.1 Truncation and Centralization
    7.4 Proof of Theorem 7.4 by Moment Approach
    8 Convergence Rates of ESD
    8.1 Some Lemmas About Integrals of Stieltjes Transforms
    8.2 Convergence Rates of Expected ESD of Wigner Matrices
    8.2.1 Lemmas on Truncation, Centralization and Rescaling
    8.2.2 Proof of Theorem 8.6
    8.2.3 Some Lemmas of Preliminary Calculation
    8.3 Further Extensions
    8.4 Convergence Rates of Expected ESD of Sample Covariance Matrices
    8.4.1 Assumptions and Results
    8.4.2 Truncation and Centralization
    8.4.3 Proof of Theorem 8.16
    8.5 Some Elementary Calculus
    8.5.1 Increment of M-P Density
    8.5.2 Integral of Tail Probability
    8.5.3 Bounds of Stieltjes Transforms of M-P Law
    8.5.4 Bounds for ~bn
    8.5.5 Integrals of Squared Absolute Values of Stieltjes Transforms
    8.5.6 Higher Central Moments of Stieltjes Transforms
    8.5.7 Integral of δ
    8.6 Rates of Convergence in Probability and Almost Surely
    9 CLT for Linear Spectral Statistics
    9.1 Motivation and Strategy
    9.2 CLT of LSS for Wigner Matrix
    9.2.1 Strategy of the Proof
    9.2.2 Truncation and Renormalization
    9.2.3 Mean Function of Mn
    9.2.4 Proof of the Nonrandom Part of (9.2.13) for j=l,r
    9.3 Convergence of the Process Mn-EMn
    9.3.1 Finite-Dimensional Convergence of Mn-EMn
    9.3.2 Limit of S1
    9.3.3 Completion of Proof of (9.2.13) for j=l,r
    9.3.4 Tightness of the Process Mn(z)-EMn(z)
    9.4 Computation of the Mean and Covariance Function of G(f)
    9.4.1 Mean Function
    9.4.2 Covariance Function
    9.5 Application to Linear Spectral Statistics and Related Results
    9.5.1 Tchebychev Polynomials
    9.6 Technical Lemmas
    9.7 CLT of LSS for Sample Covariance Matrices
    9.7.1 Truncation
    9.8 Convergence of Stieltjes Transforms
    9.9 Convergence of Finite Dimensional Distributions
    9.10 Tightness of M1n(z)
    9.11 Convergence of M2n(z)
    9.12 Some Derivations and Calculations
    9.12.1 Verification of (9.8.8)
    9.12.2 Verification of (9.8.9)
    9.12.3 Derivation of Quantities in Example (1.1)
    9.12.4 Verification of Quantities in Jonsson’s Results
    9.12.5 Verification of (9.7.8) and (9.7.9)
    10 Circular Law
    10.1 The Problem and Difficulty
    10.1.1 Failure of Techniques Dealing with Hermitian Matrices
    10.1.2 Revisit of Stieltjes Transformation
    10.2 A Theorem Establishing a Partial Answer to the Circular Law
    10.3 Lemmas on Integral Range Reduction
    10.4 Characterization of the Circular Law
    10.5 A Rough Rate on the Convergence of vn(x,z)
    10.5.1 Truncation and Centralization
    10.5.2 A Convergence Rate of the Stieltjes Transform of vn(·, z)
    10.6 Proofs of (10.2.3) and (10.2.4)
    10.7 Proof of Theorem 10.3
    10.8 Comments and Extensions
    10.8.1 Relaxation of Conditions Assumed in Theorem 10.3
    10.9 Some Elementary Mathematics
    11 Appendix A. Some Results in Linear Algebra
    11.1 Inverse Matrices and Resolvent
    11.1.1 Inverse Matrix Formula
    11.1.2 Holing a Matrix
    11.1.3 Trace of Inverse Matrix
    11.1.4 Difference of Traces of a Matrix A and Its Major Submatrices
    11.1.5 Inverse Matrix of Complex Matrices
    11.2 Inequalities Involving Spectral Distributions
    11.2.1 Singular Value Inequalities
    11.3 Hadamard Product and Odot Product
    11.4 Extensions of Singular Value Inequalities
    11.4.1 Definitions and Properties
    11.4.2 Graph-Associated Multiple Matrices
    11.4.3 Fundamental Theorem on Graph-Associated MM
    11.5 Perturbation Inequalities
    11.6 Rank Inequalities
    11.7 A Norm Inequality
    12 Appendix B. Moment Convergence Theorem and Stieltjes Transform
    12.1 Moment Convergence Theorem
    12.2 Stieltjes Transform
    12.2.1 Preliminary Properties
    12.2.2 Inequalities of Distance between Distributions in Terms of Their Stieltjes Transforms
    12.2.3 Lemmas Concerning Levy Distance
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证