0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 数理逻辑/组合数学 > 递归可枚举集合图灵度:可计算的函数和生成集合研究

相同语种的商品

浏览历史

递归可枚举集合图灵度:可计算的函数和生成集合研究


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
递归可枚举集合图灵度:可计算的函数和生成集合研究
  • 书号:9787030182951
    作者:(美)索尔(Soare, R. I.)著
  • 外文书名:Recursively Enumerable Sets and Degrees A Study of Computable Functions and Computably Generated Sets
  • 装帧:圆脊精装
    开本:B5
  • 页数:460
    字数:538
    语种:英文
  • 出版社:科学出版社
    出版时间:2016-04-25
  • 所属分类:O14 数理逻辑、数学基础
  • 定价: ¥188.00元
    售价: ¥148.52元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Introduction
    Part A. The Fundamental Concepts of Recursion Theory
    Chapter Ⅰ. Recursive Functions
    1. An Informal Description
    2. Formal Definitions of Computable Functions
    2.1. Primitive Recursive Functions
    2.2. Diagonalization and Partial Recursive Functions
    2.3. Turing Computable Functions
    3. The Basic Results
    4. Recursively Enumerable Sets and Unsolvable Problems
    5. Recursive Permutations and Myhill's Isomorphism Theorem
    Chapter Ⅱ. Fundamentals of Recursively Enumerable Sets and the Recursion Theorem
    1. Equivalent Definitions of Recursively Enumerable Sets andTheir Basic Properties
    2. Uniformity and Indices for Recursive and Finite Sets
    3. The Recursion Theorem
    4. Complete Sets, Productive Sets, and Creative Sets
    Chapter Ⅲ. Turing Reducibility and the Jump Operator
    1. Definitions of Relative Computability
    2. Turing Degrees and the Jump Operator
    3. The Modulus Lemma and Limit Lemma
    Chapter Ⅳ. The Arithmetical Hierarchy
    1. Computing Levels in the Arithmetical Hierarchy
    2. Post's Theorem and the Hierarchy Theorem
    3. En-Complete Sets
    4. The Relativized Arithmetical Hierarchy and High and Low Degrees
    Part B. Post's Problem, Oracle Constructions and the Finite Injury Priority Method
    Chapter Ⅴ. Simple Sets and Post's Problem
    1. Immune Sets, Simple Sets and Post's Construction
    2. Hypersimple Sets and Majorizing Functions
    3. The Permitting Method
    4. Effectively Simple Sets Are Complete
    5. A Completeness Criterion for R.E. Sets
    Chapter Ⅵ. Oracle Constructions of Non-R.E. Degrees
    1. A Pair of Incomparable Degrees Below 0'
    2. Avoiding Cones of Degrees
    3. Inverting the Jump
    4. Upper and Lower Bounds for Degrees
    5.* Minimal Degrees
    Chapter Ⅶ. The Finite Injury Priority Method
    1. Low Simple Sets
    2. The Original Friedberg-Muchnik Theorem
    3. SplittingTheorems
    Part C. Infinitary Methods for Constructing R.E. Sets and Degrees
    Chapter Ⅷ.The Infinite Injury Priority Method
    I. The Obstacles in Infinite Injury and the Thickness Lemma
    2. The Injury and Window Lemmas and the Strong Thickness Lemma
    3. TheJump Theorem
    4. The Density Theorem and the Sacks Coding Strategy
    5.*The Pinball Machine Model for Infinite Injury
    Chapter Ⅸ. The Minimal Pair Method and Embedding Lattices into the R.E. Degrees
    I. Minimal Pairs and Embedding the Diamond Lattice
    2.* Embedding DistributiveLattices
    3. The Non-Diamond Theorem
    4.* Nonbranching Degrees
    5.*Noncappable Degrees
    Chapter Ⅹ. The Lattice of R.E. Sets Under Inclusion
    1.Ideals, Filters, and Quotient Lattices
    2. Splitting Theorems and Boolean Algebras
    3.Maximal Sets
    4.Major Subsets and r-Maximal Sets
    5. Atomless r-Maximal Sets
    6. Atomless hh-Simple Sets
    7.* ∑3 Boolean Algebras Represented as Lattices of Supersets
    Chapter Ⅺ. The Relationship Between the Structure and the Degree of an R.E. Set
    1. Martin's Characterization of High Degrees in Terms of Dominating Functions
    2. MaximalSets and High R.E. Degrees
    3. Low R.E.Sets Resemble Recursive Set
    4.Non-Low2 R.E. Degrees Contain Atomless R.E. Sets
    5.* Low2 R.E. Degrees Do Not Contain Atomless R.E. Sets
    Chapter Ⅻ. ClassifyingIndex Sets of R.E. Sets
    1. Classifying the Index Set G(A)={ x : Wx =T A }
    2. Classifying the Index Sets G(≤ A), G(≥ A),and G(|A)
    3. Uniform Enumeration of R.E. Sets and ∑3 Index Sets
    4. Classifying the Index Sets of the Highn, Lown, and Intermediate R.E.Sets
    5. Fixed Points up to Turing Equivalence
    6. A Generalization of the Recursion Theorem and the Completeness Criterion to All Levels of
    the Arithmetical Hierarchy
    Part D. Advanced Topics and Current Research Areas in the R.E.Degrees and the Lattice
    of R.E.Sets
    Chapter XIII. Promptly Simple Sets; Coincidence of Classes of R.E. Degrees, and an Algebraic Decomposition of the
    R.E. Degrees
    1. Promptly Simple Setsand Degrees
    2. Coincidence of the Classes of Promptly Simple Degrees, Noncappable Degrees, and Effectively Noncappable
    Degrees
    3. A Decomposition of the R.E. Degrees Into the Disjoint Union of a Definable Ideal and a
    Definable Filter
    4. Cuppable Degrees and the Coincidence of Promptly Simple and Low Cuppable Degrees
    Chapter XIV. The Tree Method and 0"'Priority Arguments
    1.The Tree Method With 0'-Priority Arguments
    2.The Tree Method in Priority Arguments and the Classification of 0('), 0("), and 0("')-
    Priority Arguments
    3.The Tree Method With 0(")-Priority Arguments
    3.1. Trees Applied to an Ordinary 0(")-Priority Argument
    3.2. A 0"-Priority Argument Which Requires the Tree Method
    4.The Tree Method With a 0("')-Priority Argument:The Lachlan Nonbounding Theorem
    4.1. Preliminaries
    4.2. The Basic Module for Meeting a Subrequirement
    4.3. The Priority Tree
    4.4. Intuition for the Priority Tree and the Proof
    4.5.The Construction
    4.6.The Verification
    Chapter XV. Automorphisms of the Lattice of R.E.Sets
    1.Invariant Properties
    2.Some Basic Properties of Automorphisms of ε
    3. Noninvariant Properties
    4. The Statement of the Extension Theorem and Its Motivation
    5.Satisfying the Hypotheses of the Extension Theorem for Maximal Sets
    6.The Proof of the Extension Theorem
    6.1.The Machines
    6.2.The Construction
    6.3. The Requirements and the Motivation for the Rules
    6.4. The Rules
    6.5. The Verification
    Chapter XVI. Further Results and Open Questions About R.E. Sets and Degrees
    1.Automorphisms and Isomorphisms of the Lattice of R.E. Sets
    2.The Elementary Theory ofε
    3. The Elementary Theory of the R.E. Degrees
    4. The Algebraic Structure of tt
    References
    Notation Index
    SubjectIndex
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证