0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 材料工程 > 纳米科学与技术大全5:自组装与纳米化学(导读版)

浏览历史

纳米科学与技术大全5:自组装与纳米化学(导读版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
纳米科学与技术大全5:自组装与纳米化学(导读版)
  • 书号:9787030346605
    作者:(英)戴维 L.安德鲁斯等(David Andrews)
  • 外文书名:
  • 装帧:圆脊精装
    开本:16
  • 页数:584
    字数:865
    语种:
  • 出版社:科学出版社
    出版时间:2012/6/27
  • 所属分类:TB9 计量学
  • 定价: ¥168.00元
    售价: ¥132.72元
  • 图书介质:
    电子书

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

近年,纳米技术及其基础科学以前所未有的速度增长与发展。基于此,本书旨在为读者们呈现一本动态的、权威的和真正能获取有效信息参考著作,力求反映此学科领域全面而广阔的发展状况。此书共有5卷,本册为第五卷,自组装与纳米化学,由国际专家组写作而成,学科内容涉及材料科学、物理学、生命科学、化学等领域;每篇文章的写作都兼具学术性、批判性与可读性,内容深入浅出,前后呼应,是一本跨学科领域研究者们不可或缺的有价值的参考资料。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录


  • 5.01.1 Introduction

    5.01.2 Inorganic SBUs and Organic Linkers

    5.01.3 Architecture of the Networks

    5.01.4 Porous Structures

    5.01.4.1 0D Cage

    5.01.4.2 1D Channels

    5.01.4.3 2D Layers

    5.01.4.4 3D Channels

    5.01.5 Synthesis of MOFs

    5.01.5.1 Influencing Factors

    5.01.5.2 Solvent-Evaporation Synthesis

    5.01.5.3 Diffusion Synthesis

    5.01.5.4 Hydrothermal (or Solvothermal) Synthesis

    5.01.5.5 Microwave-Reaction Synthesis

    5.01.5.6 Ionothermal Synthesis

    5.01.5.7 Electrochemical Synthesis

    5.01.5.8 High-Throughput Synthesis

    5.01.6 Functions of MOFs

    5.01.6.1 Gas Storage

    5.01.6.1.1 Hydrogen Storage

    5.01.6.1.2 Methane Storage

    5.01.6.1.3 Carbon Dioxide Storage

    5.01.6.2 Selective Gas Adsorptions and Separations

    5.01.6.3 Catalysis

    5.01.6.4 Magnetism

    5.01.6.5 Optics

    5.01.6.6 Sensor

    5.01.6.7 Drug Delivery

    5.01.7 Summary and Outlook

    References

    5.02 纳米粒子配体

    5.02.1 Introduction

    5.02.2 Ligands, Chief Cook, and Bottle Washer

    5.02.2.1 Ligands Control the Synthesis of NPs

    5.02.2.2 A Brief Introduction to Classical Nucleation Theory

    5.02.2.3 Ligands Stabilize NP Suspensions

    5.02.2.4 Ligands and the Shape of NPs

    5.02.2.5 Ligands Give NPs Physicochemical Functionality

    5.02.3 What to Expect,Ab Initio Calculations

    5.02.4 Experimental Observation of NP Ligands

    5.02.4.1 Indirect Probing of Ligand Exchange

    5.02.4.2 Direct Probing of Ligands

    5.02.5 Observing NP Ligands with Solution NMR Spectroscopy

    5.02.5.1 Solution NMR Techniques for Observing QD Ligands

    5.02.5.1.1 A brief introduction in solution NMR spectroscopy

    5.02.5.1.2 Pulsed field gradient NMR spectroscopy

    5.02.5.1.3 Nuclear Overhauser effect NMR spectroscopy

    5.02.5.2 The Tightly Bound Ligand

    5.02.5.2.1 What to expect?

    5.02.5.2.2 The basic experiment:1D 1H NMR

    5.02.5.2.3 Tracing down the ligand resonances by diffusion NMR

    5.02.5.2.4 Identifying ligands, proton-carbon correlations

    5.02.5.2.5 A note on relaxation rates and peak broadening

    5.02.5.3 Adsorption-Desorption Equilibria,1H NMR as a Quantitative Technique

    5.02.5.3.1 Quantitative NMR

    5.02.5.3.2 Observing adsorption-desorption equilibria by NMR

    5.02.5.3.3 Understanding the adsorption isotherm

    5.02.5.4 Adsorption-Desorption Kinetics,Exploiting the NOE

    5.02.5.4.1 Dodecylamine stabilized Q-CdTe,does the tightly bound ligand model work?

    5.02.5.4.2 Observed NMR resonances,a story of timescales

    5.02.5.4.3 Tightly bound ligands have strongly negative NOEs

    5.02.5.4.4 Rapidly exchanging ligands show strongly negative transfer NoEs

    5.02.5.5 In Situ Monitoring of NP Synthesis

    References

    5.03 纳米粒子组装

    5.03.1 Introduction

    5.03.2 Assembly Methods for 1D NPs

    5.03.2.1 Assembly of NPs for Nanorod and Nanowire Formation

    5.03.2.2 Assembly of 1D NPs on Polymer Templates

    5.03.3 Assembly of NPs to Form 2D Nanocomposites

    5.03.4 Biomolecules as Templates for Assembling NPs in 1D and 2D Architectures

    5.03.5 Modulation of the Properties of 1D and 2D Structures

    5.03.5.1 Optical Response

    5.03.5.2 Electronic Behavior

    5.03.5.3 Magnetic Properties

    5.03.6 Summary and Outlook

    References

    5.04 周期的介孔材料:充满机遇的孔道

    5.04.1 Introduction

    5.04.2 Hierarchical Organization of Mesoporous Materials

    5.04.2.1 Self-Assembly of Sol-Gel Precursors and Templates-From Micro to Meso

    5.04.2.2 Growing Complexity:Powder,Films,and the Importance of Form

    5.04.3 Bringing Function into Voids

    5.04.3.1 Grafting

    5.04.3.2 Co-Condensation

    5.04.3.3 Periodic Mesoporous Organosilicates

    5.04.4 Nonsiliceous Mesoporous Materials

    5.04.4.1 Mesoporous Metal Oxides and Phosphates

    5.04.4.1.1 Synthesis strategies and objectives

    5.04.4.1.2 Realized compositions

    5.04.4.1.3 Perspectives I:Toward crystallized mesoporous oxides

    5.04.4.1.4 Perspectives II:Form and function

    5.04.4.2 Mesoporous Metals and Semiconductors

    5.04.4.2.1 Mesoporous semiconductors

    5.04.4.2.2 Mesoporous metals

    5.04.4.3 Mesoporous Carbon

    5.04.4.3.1 OMCs obtained by hard templating

    5.04.4.3.2 OMCs obtained by soft templating

    5.04.4.4 Mesoporous Ceramic Materials

    5.04.4.4.1 Silicon-based mesoporous ceramics

    5.04.4.4.2 Mesoporous carbon and boron-based ceramics

    5.04.5 Mesoscience to Mesotechnology-Why Meso?

    5.04.5.1 Sorbents and Separation Science

    5.04.5.2 Catalysis

    5.04.5.3 Drug Delivery

    5.04.5.4 Sensing

    5.04.5.5 Low-k Materials

    5.04.5.6 Photovoltaics

    5.04.6 Conclusion and Outlook

    References

    5.05 单层自组装

    5.05.1 Molecular Self-Assembly and Nanoscience

    5.05.2 Driving Forces for Molecular Assembly:Molecular Interactions in Self-Assembled Monolayers

    5.05.3 Overview of Previous Studies of Molecular Self-Assembled Monolayers

    5.05.4 Brief Summary of Synthetic Methods of 2D Self-Assembled Monolayers and the Main Techniques to Study them

    5.05.5 Molecular Self-Assembly on Au(111)

    5.05.5.1 CH3(CH2)nSH

    5.05.5.2 CH3(CH2)nCS2H

    5.05.5.3 C6H5(CH2)nSH

    5.05.5.4 CH3-(C6H4)2-(CH2)n-SH

    5.05.5.5 CF3(CH2)nSH

    5.05.5.6 Diamidothiol

    5.05.6 Organic Monolayers on Ag(111)

    5.05.7 Self-assembly of Organic Molecules on Cu,Al,Hg,Al2O3,and SiOx/Si Substrates

    5.05.8 Molecular Self-Assembly on Highly Oriented Pyrolytic Graphite

    5.05.8.1 Single-Component Long-Chain Molecules:Linear Packing and Molecular Distortion

    5.05.8.1.1 Molecular parallel packing

    5.05.8.1.2 Molecular distortion

    5.05.8.2 Multicomponent Self-Assembly and Formation of Nanostructures

    5.05.8.3 Molecular Chirality upon Self-Assembly

    5.05.9 Summary

    References

    5.06 纳米晶体合成

    5.06.1 Introduction

    5.06.1.1 Milestones of Progress in Nanocrystal Synthesis

    5.06.1.2 Synthetic Methods

    5.06.1.2.1 High-temperature organo-metallic method

    5.06.1.2.2 Single-source molecular precursor method

    5.06.1.2.3 Solvothermal/hydrothermal method

    5.06.1.2.4 Water-phase synthesis

    5.06.1.2.5 Template-assisted growth methods

    5.06.1.2.6 Synthesis of semiconductor nanocrystals in microfluidic reactors

    5.06.2 Size Tuneability of Nanocrystals

    5.06.2.1 Introduction

    5.06.2.2 Mechanisms of Size Control

    5.06.2.2.1 Nucleation and growth of nanocrystal

    5.06.2.2.2 Concepts in size control

    5.06.3 Shape,Phase,and Composition Control of Nanocrystals

    5.06.3.1 Shape Control of Nanocrystals

    5.06.3.1.1 Dynamic-induced anisotropic growth

    5.06.3.1.2 Seed-mediated growth

    5.06.3.1.3 The Oriented attached method

    5.06.3.2 Composition Control

    5.06.4 Overview of the Nanocrystal Synthesis by Material

    5.06.4.1 II-VI Semiconductor Nanocrystals

    5.06.4.2 III-V Semiconductor Nanocrystals

    5.06.4.3 IV-VI Semiconductor Nanocrystals

    5.06.4.4 IV Semiconductor Nanocrystals

    5.06.4.5 III-VI and I-III-V Nanocrystals

    5.06.4.6 Metal Oxides

    5.06.4.6.1 Sol-gel method

    5.06.4.6.2 Nonhydrolytic route

    5.06.5 New-Generation Semiconductor Nanocrystals

    5.06.5.1 Nanocrystal Heterostructures

    5.06.5.1.1 Synthetic techniques for the preparation of nanocrystal heterostructures

    5.06.5.1.2 Synthesis of 0D core-shell Nanocrystal heterostructures

    5.06.5.1.3 Synthesis of anisotropic and more complex nanocrystal heterostructures

    5.06.5.2 Doped Nanocrystals

    5.06.5.2.1 Synthesis of doped nanocrystals

    5.06.6 Summary

    References

    5.07 纳米粒子自组装基元

    5.07.1 Introduction

    5.07.1.1 Self-Assembly Principle

    5.07.1.2 NBB Classification

    5.07.2 NBB Self-Assembly Approaches

    5.07.2.1 Self-Assembly on a Substrate

    5.07.2.2 Interfacial Assembly

    5.07.2.3 Template-Assisted Assembly

    5.07.3 Self-Assembly of Complex-Shaped NBBs:Tetrapods

    5.07.4 Computational Approach to Nanoparticle Self-Assembly

    5.07.4.1 Computational Framework for Nanoparticle Self-Assembly

    5.07.4.2 Computational Studies on the Self-Assembly of NBBs on a Substrate

    5.07.4.3 Computational Studies on the Interfacial Assembly of NBBs

    5.07.4.4 Computational Studies on NBB Self-Assembly on a Templated Surface

    5.07.4.5 A Proposed Approach for Modeling Tetrapod Self-Assembly

    5.07.5 Summary

    References

    5.08 组装嵌段共聚物的化学过程

    5.08.1 Introduction

    5.08.2 Work Prior to 1992 on Chemical Processing of Self-Assembled Block Copolymers

    5.08.3 Our Research Program and Activities

    5.08.4 Architectures from Chemically Processing Assembled Block Copolymers

    5.08.4.1 Cyclic Polymers

    5.08.4.2 Thin Films Containing Nanochannels

    5.08.4.3 Cell-Like Microspheres

    5.08.5 Block Copolymer Nanofibers and Nanotubes

    5.08.5.1 Nanofiber Preparation

    5.08.5.2 Nanotube Preparation

    5.08.5.3 Dilute Solution Properties

    5.08.5.4 Chemical Reactions

    5.08.5.4.1 Backbone modification

    5.08.5.4.2 Surface grafting

    5.08.5.4.3 End functionalization

    5.08.6 Concluding Remarks

    References

    5.09 生物模版制备半导体纳米晶体

    5.09.1 Introduction

    5.09.2 Living Cells as Semiconductor Nanocrystal Factories

    5.09.3 Peptides and Proteins as Templates for Semiconductor-Based Nanomaterials

    5.09.4 Nucleic Acids as Templates for Semiconductor-Based Nanomaterials

    5.09.4.1 Monomeric Nucleotides as Semiconductor Nanocrystal Ligands:Roles of Base and Backbone

    5.09.4.2 Oligomeric Nucleotides as Semiconductor Nanocrystal Ligands:Roles of Length and Sequence

    5.09.4.3 Studies of Nucleic Acids with 3D Structure as Semiconductor Nanocrystal Ligands:Control of Nanomaterials Properties with Biomolecular Structure

    5.09.4.4 One-Step Synthesis of Biofunctionalized Semiconductor Nanocrystals Using Nucleic Acids Ligands

    5.09.5 Summary and Outlook

    References

    5.10 高分子层状硅酸盐纳米复合物

    5.10.1 Introduction and Historical Perspective

    5.10.2 Basic Structures of Layered Silicates and Polymers

    5.10.2.1 Layered Silicate Structure

    5.10.2.2 PLSN Structure: Degree of Silicate Layer Dispersion

    5.10.2.3 Polymers Used in PLSNs

    5.10.3 Synthetic Methods

    5.10.3.1 In Situ Polymerization

    5.10.3.2 Solution Intercalation/Exfoliation

    5.10.3.3 Melt Processing

    5.10.4 Characterization and Properties of PLSN Structures

    5.10.4.1 Structure of Modified Silicates

    5.10.4.1.1 XRD and TEM

    5.10.4.2 Thermal and Mechanical Properties of PLSNs

    5.10.4.2.1 Mechanical properties

    5.10.4.2.2 Thermal and flame-retardant properties

    5.10.4.3 Other Properties

    5.10.4.3.1 Gas-barrier properties

    5.10.4.3.2 Electrical properties

    5.10.4.3.3 Compatibilization of polymer blends

    5.10.5 Conclusions

    References

    5.11 介晶和介相

    5.11.1 Introduction

    5.11.1.1 Classification of Thermotropic Mesophases

    5.11.1.2 Classification of Mesogens

    5.11.1.3 Self-Assembly of Mesogens to Mesophases

    5.11.1.4 Alignment,Self-Healing,and Fixation

    5.11.1.5 Length Scales

    5.11.2 Thermotropic Mesophases

    5.11.2.1 Carbon Allotropes-from Conventional Mesogens based on Polycondensed Aromatics to Hybrid Systems of Carbon Nanoparticles

    5.11.2.1.1 Molecular structure of graphenes,synthetic strategies and interaction motifs

    5.11.2.1.2 The supramolecular self-assembling of discotic or sanidic mesogens

    5.11.2.1.3 Applications of graphene LCs

    5.11.2.1.4 Macrocycles

    5.11.2.1.5 CNTs-mesogens from enrolled graphenes

    5.11.2.1.6 LCs and fullerenes

    5.11.2.1.7 Miscellaneous carbon mesogens

    5.11.2.2 Supramolecular Mesogens

    5.11.2.2.1 Hydrogen-bonded systems

    5.11.2.2.2 Mesogens formed by halogen bonds

    5.11.2.2.3 Metallomesogens

    5.11.2.2.4 Ionic liquid crystals

    5.11.2.2.5 Donor?acceptor interactions,charge transfer,and polytopic interactions

    5.11.2.3 Bolaamphiphiles and Facial Amphiphiles-Nanostructured Mesophases by Multicolor Tiling

    5.11.2.4 Star-Shaped Mesogens

    5.11.2.5 Dendrons and Dendrimers

    5.11.2.5.1 Supramolecular dendromesogens

    5.11.2.5.2 Side-chain liquid-crystalline dendrimers

    5.11.2.5.3 Main-chain liquid-crystalline dendrimers

    5.11.3 Lyotropic Mesophases

    5.11.3.1 Lyotropic Phases-Templates for the Synthesis of Nanomaterials

    5.11.3.2 Cubosomes,Hexosomes,Lamellarsomes:Nanostructured Reverse Phases Stable in Excess Solvent

    5.11.3.3 From Mineral LCs to LCs of Nanobiomolecules

    5.11.3.3.1 Introduction

    5.11.3.3.2 Colloidal suspensions: The Derjaguin?Landau?Verwey?Overbeek theory,steric stabilization,and Onsager theory

    5.11.3.3.3 Mineral LCs

    5.11.3.3.4 Applications

    5.11.3.3.5 From nanobiomolecules toward viruses

    5.11.4 Nanoparticles and LCs

    5.11.4.1 Synthesis of Nanoparticles from LC phases

    5.11.4.2 LC Phases from Nanoparticles

    5.11.4.3 Nanoparticle Doped LCs

    References

    5.12 层层自组装胶囊在生物医药的应用

    5.12.1 Introduction

    5.12.2 LbL Assembly:Background

    5.12.3 Engineering the Capsule Layers

    5.12.3.1 pH-Responsive Capsules

    5.12.3.2 Redox-Responsive Capsules

    5.12.3.3 Light-Responsive Capsules

    5.12.3.4 Temperature-Responsive Capsules

    5.12.3.5 Enzyme-Responsive Capsules

    5.12.3.6 Chemically Responsive Capsules

    5.12.3.7 Other Stimuli-Responsive Capsules

    5.12.4 Engineering the Capsule Surface

    5.12.5 Encapsulating Cargo

    5.12.6 Applications of LbL Capsules

    5.12.6.1 Glucose-Responsive Systems-Delivery and Sensing

    5.12.6.2 LbL Drug Delivery Systems

    5.12.6.3 Bioreactors

    5.12.7 Conclusion

    References

    5.13 功能化石墨烯:合成和性能

    5.13.1 Introduction

    5.13.2 Chemical Functionalization of Fullerenes

    5.13.2.1 Nucleophilic Additions to Fullerenes

    5.13.2.2 Nucleophilic Addition?Elimination Mechanism:The Bingel-Hirsch Reaction with Fullerenes

    5.13.2.3 Cycloaddition Reactions to Fullerenes

    5.13.2.4 1,3-Dipolar Cycloaddition of Azomethine Ylides to Fullerenes

    5.13.2.5 Diels-Alder Cycloaddition Reactions with Fullerenes

    5.13.3 Molecular Machines

    5.13.4 Molecular Charge-Transfer Conjugates

    5.13.5 Molecular Wires

    5.13.6 Conclusion and Outlook

    References

    5.14 微乳化制备方法(综述)

    5.14.1 Introduction

    5.14.1.1 Basic Concepts:Micelles and Microemulsions

    5.14.1.2 Properties and Applications

    5.14.2 Synthesis of Nanoparticles(NPs)Microemulsion

    5.14.2.1 Synthesis of Metal and Mixed-Metal NPs

    5.14.2.2 Synthesis of Semiconductor NPs

    5.14.2.3 Synthesis of Magnetic NPs

    5.14.2.4 Synthesis of Oxide NPs in Microemulsion

    5.14.3 Synthesis of Rare Earth(RE)Nanocrystals(NCs)in Microemulsion

    5.14.3.1 Synthesis of Regular RE NCs with Well-Defined Facets

    5.14.3.2 Synthesis of 1D RE NCs

    5.14.3.3 Synthesis of RE Super Nanostructures

    5.14.4 Silica Coating of NPs

    5.14.4.1 Hydrophilic Metallic NPs

    5.14.4.2 Hydrophilic Semiconductor NPs

    5.14.4.3 Hydrophilic Magnetic NPs

    5.14.4.4 Miscellaneous Hydrophilic NPs

    5.14.4.5 Hydrophobic Metallic NPs

    5.14.4.6 Hydrophobic Magnetic NPs

    5.14.5 Direct Coating of Hydrophobic Semiconductor QDs

    5.14.5.1 Hydrophobic Multifunctional NCs

    5.14.5.2 Silica Coating of RE NCs

    5.14.6 Conclusions and Outlook

    References

    5.15 纳米技术、社会和环境

    5.15.1 Introduction

    5.15.2 Twenty-first Century Relationships between Science,Technology,Society,and the Environment

    5.15.3 Economy

    5.15.3.1 Technoscience and Business

    5.15.3.2 Nanoproducts and Society

    5.15.3.3 Patenting Nanoproducts

    5.15.3.4 Military Applications

    5.15.4 Ecology

    5.15.4.1 Nanotechnology and the Environment

    5.15.4.2 Nature,Technology,and Public Discourse

    5.15.4.3 NGOs and Local Communities

    5.15.5 Health

    5.15.5.1 Nanotechnology and Health

    5.15.5.2 Nanotoxicity

    5.15.6 Equity

    5.15.6.1 Global Equity and Rights:Implications for Developing Countries

    5.15.6.2 Power

    5.15.6.3 Identity

    5.15.6.4 Gender

    5.15.6.5 Privacy

    5.15.7 Governance

    5.15.7.1 Science and Technology Policy:Funding Nanotechnology Research and Development

    5.15.7.2 Nanotechnology Regulatory Capacity

    5.15.7.3 Public Attitudes and Media Coverage

    5.15.7.4 Nanotechnology Public Engagement and Democracy

    5.15.8 Imagined Futures

    5.15.8.1 Fact and Fiction:Social and Cultural Influences

    5.15.8.2 The Construction of Utopias and Dystopias

    5.15.8.3 Scenario Planning

    5.15.9 Conclusion: Nature and Nanotechnology

    References

    ]]>
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证