0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 光学 > 半导体光学和输运现象

浏览历史

半导体光学和输运现象


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
半导体光学和输运现象
  • 书号:9787030313935
    作者:W.Schafer
  • 外文书名:
  • 装帧:
    开本:B5
  • 页数:512
    字数:625
    语种:
  • 出版社:科学出版社
    出版时间:2011/7/1
  • 所属分类:O47 半导体物理学
  • 定价: ¥98.00元
    售价: ¥77.42元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

这是一本半导体物理方面的教科书,写给研究生和研究人员,它属于Springer的Advanced Textsin Physics书系,2002年出版。假定读者已有固体物理学的基础知识,作者全面介绍了半导体光学和输运现象领域的基本理论和理论在半导体激光器,半导体探测器,电光调制器,单电子晶体管,微腔和双垒共振隧道二极管等方面的应用。书中有一百多个习题和解法,以帮助读者深入理解本书的内容。本书是为工作在这一领域的研究生和高年级大学生写的,也是活跃在这一领域的科学工作者的一本很好的参考书。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1.Some Basic Facts on Semiconductors
    1.1 Semiconductor Heterostructures
    1.2 Doped and Modulation-Doped Semiconductors
    2.Interaction of Matter and Electromagnetic Fields
    2.1 Microscopic Maxwell Equations
    2.2 The Many-Particle Hailliltonian
    2.3 Second Quantization for Particles
    2.4 Quantization of Electromagnetic Fields
    2.4.1 Coherent States
    2.5 The Interaction Hamitonian of Fields and Particles
    2.6 Macroscopic Maxwell Equations and Response Functions
    2.6.1 Direct Calculation of Induced Charges and Currents
    2.6.2 Phenomenological Theory of Linear Response
    2.6.3 Time-Dependent Perturbation Theory
    2.6.4 Longitudinal Response Functions
    2.6.5 Transverse Response Functions
    2.7 Measurable Quantities in Optics
    2.7.1 Linear Optical Susceptibnity and Macroscopic Polarization
    2.7.2 Absorption cOEfficient
    2.8 Problems
    3.One-Particle Properties
    3.1 Hartree-Fock Theory for Zero Temperature
    3.2 Hartree-Fock Theory for Finite Temperature
    3.3 Band Structure and Ground-State Properties
    3.3.1 The Local-Density Approximation
    3.3.2 Lattice Periodicity
    3.4 The Effective-Mass Approximation
    3.5 Kp Perturbation Theory for Degenerate Bands
    3.6 Transition Matrix Elements
    3.7 Density of States
    3.8 Position of the Chemical Potential
    3.9 Problems
    4.Uncorrelated Optical Transitions
    4.1 The Optical Bloch Equations
    4.2 Linear Optical Properties
    4.3 Nonlinear Optical Properties
    4.3.1 Perturbation Analysis in the Frequency Domain
    4.3.2 Introducing the Bloch Vector
    4.3.3 Perturbation Analysis in the Time Domain
    4.3.4 Alternative Approaches
    4.4 Semiconductor Photodetectors
    4.4.1 The Field-Field Correlation Punction and its Relation to Coherence
    4.5 Problems
    5.Correlated Transitions of Bloch Electrons
    5.1 Equations of Motion in the Hartree-Fock Approximation
    5.2 Linear Optical Properties:The Continuum of Interband Transitions
    5.2.1 The Bethe-Salpeter Equation
    5.2.2 The Dielectric Function
    5.3 Solution by Continued Fractions
    5.4 Problems
    6.Correlated Transitions near the Band Edge
    6.1 The Semiconductor Bloch Equations
    6.2 Linear Optical Properties:Bound Electron-Hole Pairs
    6.2.1 The Coulomb Green's Function
    6.2.2 Optical Properties due to Bound Electron-Hole Pairs
    6.2.3 Numerical Methods
    6.2.4 Excitons in Quantum Wells
    6.2.5 Propagation of Light:Polaritons and Cavity Polaritons
    6.3 Nonlinear Optical Properties
    6.3.1 The Local-Field Approximation
    6.3.2 Numerical Solutions
    6.4 Problems
    7.Influence of Static Magnetic Fields
    7.1 One-Particle Properties
    7.1.1 Effective Mass Theory for Isolated Bands
    7.1.2 Degenerate Bloch Electrons in a Magnetic Field
    7.1.3 One-Particle States in Quantum Wells
    7.2 Optical Properties of Magneto-Excitons
    7.2.1 Evaluation of the Coulomb Matrix Element
    7.2.2 Linear Optical Properties
    7.2.3 Semiconductor Bloch Equations in Two and Three Dimensions
    7.2.4 Bose Condensation of Magnetoexcitons in Two Dimensions
    7.2.5 Nonlinear Absorption of Magnetoexcitons in Quantum Wells
    7.3 Problems
    8.Influence of Static Electric Fields
    8.1 Introduction
    8.2 Uncorrelated Optical Transitions in Uniform Electric Fields
    8.2.1 Optical Absorption
    8.3 Correlated Optical Transitions in Uniform Electric Fields
    8.3.1 An Analytical Model
    8.3.2 Representation in Parabolic Coordinates
    8.4 Quantum Wells in Electric Fields
    8.5 Superlattices in Electric Fields
    8.5.1 One-Particle States in Superlattices
    8.5.2 Semiconductor Bloch Equations
    8.6 Problems
    9.Biexeitons
    9.1 Truncation of the Many-Particle Problem in Coherently Driven Systems
    9.1.1 Decomposition of Expectation Values
    9.2 Equations of Motion in the Coherent Limit
    9.2.1 Variational Methods
    9.2.2 Eigenfunction Expansion
    9.3 Bound-State and Scattering Contributions
    9.3.1 Separation of Bound States
    9.3.2 Biexcitonic Scattering Contributions
    9.4 Signatures of Biexcitonic Bound States
    9.4.1 Nonlinear Absorption
    9.4.2 Four-Wave Mixing
    9.5 Problems
    10.Nonequilibrium Green's Functions
    10.1 Time Evolution under the Action of External Fields
    10.2 Definitions of One-Particle Green's Functions
    10.3 Equations of Motion of One-Particle Green's Functions
    10.4 Screened Interaction,Polarization,and Vertex Function
    10.5 Quantum Kinetic Equations
    10.5.1 The Two-Time Formalism
    10.5.2 Reduction of Propagators to Single Time Functions
    10.6 The Self-Energy in Different Approximations
    10.6.1 Ground-State Energy
    10.6.2 The Screened Hartree-Fock Approximation
    10.7 The Screened Interaction
    10.7.1 Separation of the Intraband and the Interband Susceptibility
    10.7.2 The Screened Interaction in Random Phase Appproximation
    10.8 The Second-Order Born Approximation
    10.9 Problems
    11.The Electron-Phonon Interaction
    11.1 The Phonon-Induced Interaction
    11.2 The Phonon Green's Function
    11.2.1 Eigenmodes of Lattice Vibrations
    11.2.2 Green's Function Representation of the Density-Density Correlation Function
    11.3 Electron Phonon Coupling in the Long-Wavelength Limit
    11.3.1 Coupling to Longitudinal Optical Phonons
    11.3.2 Coupling to Acoustic Phonons
    11.4 The Phonon Self-Energy
    11.4.1 The Polaron
    11.4.2 Dephasing Induced by Phonons
    11.5 Nonequilibrium Phonons
    11.5.1 Renormalization of Phonons
    11.5.2 Kinetic Equation for the Phonon Green's Function
    11.6 Problems
    12.Scattering and Screening Processes
    12.1 Carrier Phonon Scattering
    12.1.1 Luminescence Spectra
    12.1.2 Four-Wave-Mixing Experiments
    12.1.3 Nonequilibrium Phonons
    12.2 Carrier-Carrier Scattering
    12.2.1 The Limit of Quasi-Equilibrium
    12.3 Scattering in the Presence of Bound States
    12.3.1 Exciton-Phonon Scattering
    12.3.2 Exciton-Exciton versus Exciton-Electron Scattering
    12.4 Problems
    13.The Semiconductor Laser
    13.1 Introduction
    13.2 Semiclassical Approach
    13.2.1 The Semiconductor Bloch Equations in a Cavity
    13.2.2 The Standard Rate Equations
    13.2.3 Extended Rate Equations
    13.2.4 Spectral Hole-Burning
    13.3 Quantum Theory
    13.3.1 The Photon Kinetics
    13.3.2 The Carrier Kinetics
    13.3.3 The Semiconductor Laser Linewidth
    13.4 Problems
    14.Classical Transport
    14.1 Transport Coefficients(Without Magnetic Field)
    14.1.1 Electrical Conductivity
    14.1.2 Peltier Coefficient
    14.1.3 Thermal Conductivity
    14.2 Transport Coefficients(with Magnetic Field)
    14.2.1 Hall Effect and Hall Resistance
    14.3 Towards Ballistic Electrons:The Hot-Electron Transistor
    14.4 Problems
    15.Electric Fields in Mesoscopic Systems
    15.1 Elementary Approach
    15.1.1 Resonant Tunneling Ⅰ
    15.1.2 Quantized Conductance
    15.1.3 Coulomb Blockade and the SET Transistor
    15.2 Resonant Tunneling Ⅱ
    15.2.1 Boundary Conditions and Discretization
    15.2.2 Scattering Contributions
    15.2.3 Numerical Results
    15.2.4 Time-Dependent Phenomena
    15.3 Problems
    16.Electric and Magnetic Fields in Mesoscopic Systems
    16.1 The Integer Quantum Hall Effect
    16.2 Edge Channels and the Landauer-Buttiker Multiprobe Formula
    16.2.1 Edge Channels
    16.3 Microscopic Derivation of the Landauer-Biittiker Formula
    16.3.1 Linear Response Theory
    16.3.2 The Multiprobe Landauer-Büttiker Formula
    16.4 The Fractional Quantum Hall Effect
    16.5 Magnetotransport Through Dot or Antidot-Lattices
    16.6 Problems
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证