0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 方程/动力系统 > 奇非线性行波方程研究的动力系统方法(英文版)

相同语种的商品

浏览历史

奇非线性行波方程研究的动力系统方法(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
奇非线性行波方程研究的动力系统方法(英文版)
  • 书号:9787030188359
    作者:李继彬,戴晖晖
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:252
    字数:300
    语种:英文
  • 出版社:科学出版社
    出版时间:2007-05-21
  • 所属分类:O17 数学分析
  • 定价: ¥46.00元
    售价: ¥36.34元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

The Studies of solitons and complete integrability of nonlinear wave equations and bifurcations and chaos of dynamical ystems are two very active fields in nonlinear science. Because a homoclinic orbit of a traveling wave system(ODEs) corresponds to a solitary wave solution of a nonlinear wave equation(PDE). This fact provides an intersection point for above two study fields. The aim of this book is to give a more systematic accotmt for the bifurcation theory method of dynamical systems to find traveling wave solutions with an emphasis on singular waves and understand their dynamics for some classes of the wellposedness of nonlinear evolution equations. Readers shall find how standard methods of the theory of dynamical systems may be used for the study of traveling wave solutions even the case of systems with discontinuities.
Any reader trying to understand the subject of this book is only required to know the elementary theory of dynamical systems and elementary knowledge of nonlinear wave equations. This book should be useful as a research reference for graduate students, teachers and engineers in different study fields.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Chapter 1 Traveling Wave Equations of Some PhysicalModels
    1.1 The model of nonlinear oscillations of hyperelastic rods
    1.2 Higher order wave equations of Korteweg-De Vries type
    1.3 Camassa-Holm equation and its generalization forms
    1.4 More classes of equations of mathematical physics
    Chapter 2 Basic Mathematical Theory of the Singular
    Traveling Wave Systems
    2.1 Some preliminary knowledge of dynamical systems
    2.2 Phase portraits of traveling wave equations having singular straight lines.
    2.3 Main theorems to identify the profiles of waves and some examples
    Chapter 3 Bifurcations of Traveling Wave Solutions of Nonlinear Elastic Rod Systems
    3.1 Bifurcations of phase portraits of (3.0.1) and physical acceptable solutions
    3.2 Four types of solitary waves and three types of periodic waves
    3.3 The non-periodic behavior of axial motions
    Chapter 4 Bifurcations of Traveling Wave Solutions of Generalized Camassa-Holm Equation
    4.1 Bifurcations of phase portraits of system (4.0.2)
    4.2 Exact parametric representations of traveling wave solutions of (4.0.1)
    4.3 The existence of smooth solitary wave solutions and periodic wave solutions
    Chapter 5 Bifurcations of Traveling Wave Solutions of Higher Order Korteweg-De Vries Equations
    5.1 Traveling wave solutions of the second order Korteweg-De Vries equation in the parameter condition group (I)
    5.2 Traveling wave solutions of the second order Korteweg-De Vries equation in the parameter condition group (II)
    5.3 Traveling wave solutions for the generalization form of modified Korteweg-De Vries equation
    Chapter 6 The Bifurcations of the Traveling Wave Solutions of K(m, n) Equation
    6.1 Bifurcations of phase portraits of system (6.0.2)
    6.2 Some exact explicit parametric representations of traveling wave solutions
    6.3 Existence of smooth and non-smooth solitary wave and periodic wave solutions
    6.4 The existence of uncountably infinite many breaking wave solutions and convergence of smooth and non-smooth traveling
    wave solutions as parameters are varied
    Chapter 7 Kink Wave Solution Determined by a Parabola
    Solution of Planar Dynamical Systems
    7.1 Six classes of nonlinear wave equations
    7.2 Existence of parabola solutions and their parametric representations
    7.3 Kink wave solutions of 6 classes of nonlinear wave equations
    Chapter 8 Traveling Wave Solutions of Coupled Nonlinear Wave Equations
    8.1 Traveling wave equation of the Kupershmidt’s equation
    8.2 Bifurcations of phase portraits of (8.1.7)
    8.3 Existence of smooth solitary wave, kink wave and periodic wave solutions
    8.4 Non-smooth periodic waves and uncountably infinite many breaking wave solutions
    Chapter 9 Solitary Waves and Chaotic Behavior for a Class of Coupled Field Equations
    9.1 Solitary wave solutions of the integrable case of (9.0.1)
    9.2 The existence of small amplitude periodic solutions
    9.3 Chaotic behavior of solutions of (9.0.2)
    9.4 The existence of arbitrarily many distinct periodic orbits
    Chapter 10 Bifurcations of Breather Solutions of Some Nonlinear Wave Equations
    10.1 Introduction
    10.2 Bifurcations of traveling wave solutions of system (10.1.7) when VRP (θ, r) given by (10.1.2)
    10.3 Traveling wave solutions of system (10.1.1) with VRP (θ, r) givenby (10.1.2)
    10.4 Bifurcations of solutions of (10.1.7) with VRP (θ, r) given by (10.1.3)
    10.5 Traveling wave solutions of (10.1.1) with VRP (θ, r) given by (10.1.3)
    10.6 Bifurcations of breather solutions of (10.1.4)
    Chapter 11 Bounded Solutions of (n+1)-Dimensional Sineand Sinh-Gordon Equations
    11.1 (n+1)-dimensional Sine-and Sinh-Gordon equations
    11.2 The bounded solutions of the systems (11.1.4) and (11.1.5)
    11.3 The bounded traveling wave solutions of the form (11.1.2a) of(11.1.1)
    Chapter 12 Exact Explicit Traveling Wave Solutions for Two Classes of (n+1)-Dimensional Nonlinear Wave Equations
    12.1 (n+1)-dimensional Klein-Gordon-Schrodinger equations
    12.2 (n+1)-dimensional Klein-Gordon-Zakharov equations
    References
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证