0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: > 计算物理学 英文影印版

相同语种的商品

浏览历史

计算物理学 英文影印版


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
计算物理学 英文影印版
  • 影印版
  • 书号:7030089138
    作者:K.H.Hoffmam
  • 外文书名:
  • 装帧:平装
    开本:16开
  • 页数:
    字数:464000
    语种:中文
  • 出版社:科学出版社
    出版时间:2001-02-12
  • 所属分类:O41 理论物理学
  • 定价: ¥49.00元
    售价: ¥38.71元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

用户评论

全部咨询

本书属于中国科学院推荐的研究生用原版教材。本书的主要内容为蒙特卡洛方法和分子动力学方法在固体、纳米材料、分形、化学反应及生物中的应用。书中介绍了目前常用的模型,并给出了简单的练习。
本书可供物理、化学、力学、生物相关专业的研究生阅读,亦可供相关领域的科技人员参考。
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Random Number Generation*
    Dietrich Stauffer
    1 Introduction
    2 TheMiracleNumber 16807
    3 Bit Strings of Kirkpatrick-Stoll
    4 A Modern Example
    5 Problems
    6 Summary
    References
    A Few Exercises with Random Numbers
    Peter Blaudeck
    Monte Carlo Simulations of Spin Systems*
    Wolfuard Janke
    1 Introduction
    2 Spin Models and Phase Transitions
    2.1 ModelsandObservables
    2.2 Phase Transitions
    3 TheMonte CarloMethod
    3.1 Estimators and Autocorrelation Times
    3.2 Metropolis Algorithm
    3.3 Cluster Algorithms
    3.4 Multicanonical Algorithms fOr First-Order Transitions
    4 ReweightingTechniques
    5 Applications to the 3D Heisenberg Model
    5 1 Simulation8forT>Tc
    5.2 SimulationsnearTc
    6 Concluding Remaxks
    Appendix: Program Codes
    Metastable Systems and Stochastic Optimization*
    Karl Heinz Hoffmann
    1 An Introduction to Complex Systems
    2 Dynamics in Complex Systems
    2.1 Thermal Relaxation Dynamics: The Metropolis Algorithm
    2.2 ThermaJ Relaxation Dynamics: A Marcov Process
    2.3 Thermal Relaxation Dynamics: A Simple Example
    3 Modeling Constant-Temperature Thermal Relaxation
    3.1 Coarse-Graining a Complex State Space
    3.2 TheeDynaJnics
    3.3 A Serious Application: Aging Effects in Spin Glasses
    4 Stochastic Optimization: How to Find the Ground State
    of ComplexSystems
    4.1 Simulated Annealing
    4 2 Optimal Simulated Annealing Schedules: A Simple Example.
    4.3 AdaPtive Annealing Schedules and the Ensemble Approach
    to Simulated Annealing
    5 Summary
    Appendix: Examples and Exercises (with S. Schubert)
    References
    Modelling and Computer Simulation of Granular Media
    Dietrich E.Wolf
    1 The Physics of Granular Media
    1.1 What are Granular Media?
    1.2 Stress Distribution in Granular Packing: Arching
    1.3 Dilatancy, Fluidization and CollisionaJ Cooling
    1.4 Stickand-Slip Motion and Self Organized Criticality
    (withS.Dippel)
    1.5 Segregation, Convection, HeaPing (with S. Dippel)
    2 Molecular Dynamics Simulations I: Soft Particles
    2.1 General Remaxks
    2.2 Normal Force
    2.3 Tangelltial Force
    2.4 Detarhment Effect
    2.5 Brake Failure Effect (with J. Scharer)
    3 Moleculax Dynamic Simulations II: Haxd Paxticles (with J Scharer)
    3.1 Evellt-Driven Simulation
    3.2 Collision Operator
    3.3 Limitations
    4 Contact Dynamics Simulations (with L. Brendel and F. Radai)
    4.1 General Remarks
    4.2 Contact Laws and Equations of Motion
    4.3 Iterative Determination of Forces and Acceler8.tions
    4.4 Results
    5 The Bottom-to-Top Restructuring Model
    5.1 The Algorithm and its Justification (with E. Jobs)
    5.2 Simulation of a Rotating Drum (with T. Scheffler and G. Baumann
    6 Conclusion
    References
    Algorithms for Biological Aging*
    DietrichStauffer
    1 Introduction
    2 Concepts and Models
    3 Techniques
    4 Results
    References
    Simulations of Chemical Reactions
    Alexander Blumen, Igor Sokolov, Gerd Zumofen, and Joseph Klafter .
    1 lntroduction
    2 TheBasicKineticApproach
    3 Numerical and AnalyticaJ Approaches for Reactions Under Diffusion.
    4 Reactionsin LayeredSystems
    5 ReactionsUnderMiring
    6 Reactions Controlled by Enhanced Diffusion
    references
    Random Walks on Fractals*
    Armin Bunde, Julia Drager, and Markus Porto,
    1 Introduction
    2 Deterministic fractals
    2.1 TheKochCurve
    2.2 The Sierpinski Gasket
    3 Random fractaJs
    3.l The Random-Walk trail
    3.2 Self Avoiding Walks
    3.3 Percolation
    4 The "Chemical Distance" e
    5 Random Walks on fractals
    5.1 Root Mean Square Displacement R(t)
    5.2 The Mean Probability Density
    6 Biased Diffosion
    7 Numerical Approaches
    7 1 Generation of Percolation Clusters,
    7.2 Simulation of Random Walks
    8 Description of the Programs
    References
    Multifractal Characteristics of Electronic Wave Functions
    in Disordered Systems*
    MichaelSchreiber
    1 Electronic States in Disordered Systems
    2 The Anderson Model of Localization
    3 CaJGulation of the Eigenvectors
    4 Description of Multifractal Objects
    5 Mu1tifractal AnaJysis of the Wave Functions
    6 Computation of the Multifractal Characteristics
    7 Topical Results of the Multifractal Analysis
    References
    Thansfer-Matrix Methods and Finite-Size Scaling
    fOr Disordered Systems*
    BernhardKramer and Michael Schreiber
    l Introduction
    2 One-Dimensional Systems
    2.1 Thenansfer Matrix
    2.2 TheOrdered Limit
    2.3 The Localization Length
    2.4 Resolvent Method
    3 Finite-Size Scaling
    4 Numerical Evaluation of the Anderson Transition
    4.l Localization Length of Quasi-1D Systems
    4.2 Dependence of the Localization Length on the Cross Section.
    4.3 Finite-Size Scaling Numerically
    5 Present Status of the Results from Transfer-Matrix Calculations
    References
    Quantum Monte Carlo Investigations for the Hubbard Model*
    Hans-Georg Matuttis and Ingo Morgenstern
    1 Introduction
    1.1 TheHubbardModel
    1.2 WhattoCompute
    1.3 QuantumSimulations
    2 Grand Canonical Quantum Monte Carlo
    2.1 The Thotter--Suzuki Transformation
    2.2 The Hubbard--Stratonovich Transformation
    2.3 The Partition Function
    2.4 The Monte Carlo Weight
    3 Equal--Time Greens Functions
    3.1 Single SpinUpdates
    3.2 Numerical Instabilities
    4 Historyand Further Reading
    Appendix A: Statistical Monte Carlo Methods
    AppendixB: OCTAVE
    AppendixC:Exercises
    References
    Quantum Dynamics in Nanoscale Devices*
    Hans De Raedt
    l Introduction
    2 Theory
    3 Data AnaJysis
    4 Implemelltation
    5 Application: Quatum Interference of Two Identical Particles
    References
    Quantum Chaos
    Hans Jhrgen Korsch and Henning Wiescher
    1 Classical and Quantum Chaos
    2 QuantumTimeEvolution
    3 QuantumStateTomograPhy
    3.1 Phase-Space Distributions
    3.2 Phase-SpaceEntropy
    4 Case Study: A Driven Anharmonic Quatum Oscillator
    4.1 Classical Phase-Space Dynamics.
    4.2 Quatum Phase-Space Dynamics
    4.3 Quasienergy Spectra
    4 4 ChaoticTUnneling
    5 Conc1udingRemarks
    References
    Numerical Simulation in Quantum Field Theory*
    Ulli Wolff
    1 Quantum Field Theory and Particle Physics
    1.1 Paxticles, FieIds, Standard Model
    1 2 Beyond Perturbation Theory
    2 Lattice Formulation of Field Theory
    2.1 Path Integral,
    2.2 Lattice RegUlarization
    2.3 Field Theory and Critical Phenomena
    2.4 Effective Field Theory
    3 Stochastic Evaluation of Path Integrals
    3.1 Monte Carlo Method
    3.2 MetropolisAlgorithmforW
    4 Summary
    Appendix: FORTRAN Monte Carlo Package for
    References
    Modeling and a Simulation Method for Molecular Systems
    Dieter W.Heermann
    1 Introduction
    2 Brief Review of the Simulation Method
    3 Modeling of Polymer Systems
    4 Coarses Graining
    5 The Monomer Unit
    6 Bonded Interactions for BPA-PC
    7 Parallelization of the Polymer System
    References
    Constrailits in Molecular Dynarnics, Nonequilibrium Processes
    in Fluids via ComPuter Simulations
    SiegfriedHess
    1 Introduction
    2 Basics of Moleculax Dynamics,
    2.1 Equations of Motion
    2.2 Extraction of Data from MD Simulations
    3 Potentials, Constraints, and Integrators
    3.1 Interaction Potelltialand Scaling
    3.2 Thermostats
    3.3 Integrators
    4 Nonequilibrium Phenomena
    4.1 Relaxation Processes
    4.2 PlaneCouetteFlow
    4.3 Viscosity
    4.4 StructuralChanges
    4.5 ColloidalDispersions
    4.6 Mixtures
    5 Complex Fluids
    5.1 Polymer Melts
    5.2 Nematic Liquid Crystals
    5.3 Ferrofluids and Magneto-Rheological Fluids
    References
    Molecular-Dynamic Simulations
    of Structure Formation in Complex Materials
    Thomas ftauenheim, Dirk Porezag, Thomas K5hler, and nank Weich
    1 Introduction
    2 SimulationMethods
    3 Total Energies and Interatomic Forces
    3 1 ClassicaJConcepts
    3.2 Density-Functional Theory, Car--Paxrinello MD
    4 Density-Functional Based Tight-Binding Method
    4.1 Creation of the Pseudoatoms
    4 2 Calculation of Matrix Elements
    4.3 Fitting of Short-Range Repulsive Part
    5 Vibrational Properties
    6 Simulation Geometries and Regimes
    6 1 Clusters,Molecules
    6.2 Bulk-CrystaJline and Amorphous Solids
    6.3 Surfaces and Adsorbates
    7 Accuracy and Thansferability
    7 1 SmaJl Silicon Clusters, Si
    7.2 Molecules, Hydrocarbons
    7.3 Solid Crystalline Modifications, Silicon
    8 Applications
    8.1 Structure and Stability of Polymerized C6o.
    8.2 Stability of Highly TetrahedraJ Amorphous Carbon, ta-C
    8.3 Diamond Surface Reconstructions
    9 Summary
    References
    Finite Element Methods for the Stokes Equation
    Jochen Reichenbach and Nuri Aksel
    1 Introduction
    2 Stokes Equation
    2.1 Conservation Equations
    2.2 Function Spaces and Vaiational Formulation
    2.3 SaddlePoilltProblem
    2.4 GeneraJ Boundary Conditions
    2.5 Example
    3 Discretization
    3.l GeneralFormulation
    3.2 Finite Elements for Saddle-Point Problems
    4 Final Remaxks
    References
    Principles of Parallel Computers
    and Some Impacts on Their Programming Models
    Wolfgang Rehmand Thomas Radke
    1 Introduction
    2 Overview on Architecture Principles
    3 General Classification
    4 Multiprocessor Systems
    5 Massively Parallel Processor Systems
    6 Multiple Shared-Memory Multiprocessors
    7 Multithreading Programming Model
    8 Message-Passing Programming Model
    9 Summary
    References
    Parallel Programming Styles: A Brief Overview
    Andreas Munke, JorgWerner, and WolfgangRehm
    1 Introduction
    2 ProgrammingModels
    2.1 Definition
    2.2 ClassifiCation
    3 Programming a Shared Memory Computer
    3.1 The KSR Programming Model
    3.2 Levelsof Parallelism
    3.3 Program Implementation
    3.4 Examples
    4 Programming a Distributed Memory Computer Using PARIX
    4.1 Whatis PAmX
    4.2 PARIX Haxdware Environment
    4 3 Communication and Process Model Under PARIX
    4.4 Programming Model
    4.5 An Example, PARIX says "Hello World"
    5 Programming Heterogenous WOrkstation Clusters Using MPI
    5.1 Introduction
    5.2 Basic Structure of MPICH
    5.3 WhatIsIncluded in MPI?
    5.4 What Does the Standard Exclude?
    5.5 MPI Says "Hello World"
    5 6 Current Avalable Implementations of MPI
    6 Summary
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证