0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 几何/拓扑 > 算法拓扑学及三维流形的分类

浏览历史

算法拓扑学及三维流形的分类


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
算法拓扑学及三维流形的分类
  • 书号:9787030313782
    作者:Sergei Matveev
  • 外文书名:
  • 装帧:
    开本:B5
  • 页数:512
    字数:630
    语种:
  • 出版社:科学出版社
    出版时间:2011/6/28
  • 所属分类:O18 几何、拓扑
  • 定价: ¥98.00元
    售价: ¥77.42元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

这本书提供了一个全面、详细的3-维流形的分类并介绍了算法拓扑学,该书的作者也是这方面领域的专家。该书是springer的Algorithmsand Computationin Mathematics丛书的第九本。属于“反映学术前沿进展的优秀学术著作”这一类。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1 Simple and Special Polyhedra
    1.1 Spines of 3-Manifolds
    1.1.1 Collapsing
    1.1.2 Spines
    1.1.3 Simple and Special Polyhedra
    1.1.4 Special Spines
    1.1.5 Special Polyhedra and Singular Triangulations
    1.2 Elementary Moves on Special Spines
    1.2.1 Moves on Simple Polyhedra
    1.2.2 2-Cell Replacement Lemma
    1.2.3 Bubble Move
    1.2.4 Marked Polyhedra
    1.3 Special Palyhedra Which are not Spines
    1.3.1 Various Notions of Equivalence for Polyhedra
    1.3.2 Moves on Abstract Simple Polybedra
    1.3.3 How to Hit the Target Without Inverse U-Turns
    1.3.4 Zeeman's Collapsing Conjecture
    2 Complexity Theory of 3-Manifolds
    2.1 What is the Complexity of a 3-Manifold?
    2.1.1 Almost Simple Polyhedra
    2.1.2 Defiultion and Estimation of the Complexity
    2.2 Properties of Complexity
    2.2.1 Converting Almost Simple Spines into Special Ones
    2.2.2 The Finiteness Property
    2.2.3 The Additivity Property
    2.3 Closed Manifolds of Small Complexity
    2.3.1 Enumeration Procedure
    2.3.2 Simplification Moves
    2.3.3 Manifolds of Complexity ≤ 6
    2.4 Graph Manifolds of Waldhausen
    2.4.1 Properties of Graph Manifolds
    2.4.2 Manifolds of Complexity ≤ 8
    2.5 Hyperbolic Manifolds
    2.5.1 Hyperbolic Manifolds of Complexity 9
    2.6 Lower Bounds of the Complexity
    2.6.1 Logarithmic Estimates
    2.6.2 Complexity of Hyperbolic 3-Manifoffis
    2.6.3 Manifolds Having Special Spines with One 2-Cell
    3 Haken Theory of Normal Surfaces
    3.1 Basic Notions and Haken's Scheme
    3.2 Theory of Normal Curves
    3.2.1 Normal Curves and Normal Equations
    3.2.2 Fundamental Solutions and Fundamental Curves
    3.2.3 Geometric Summation
    3.2.4 An Alternative Approach to the Theory of Normal Curves
    3.3 Normal Surfaces in 3-Manifolds
    3.3.1 Incompressible Surfaces
    3.3.2 Normal Surfaces in 3-Manifolds with Boundary Pattern
    3.3.3 Normalization Procedure
    3.3.4 Fundamental Surfaces
    3.3.5 Geometric Summation
    3.4 Normal Surfaces in Handle Decompositions
    4 Applications of the Theory of Normal Surfaces
    4.1 Examples of Algorithms Based on Haken's Theory
    4.1.1 Recognition of Splittable Links
    4.1.2 Getting Rid of Clean Disc Patches
    4.1.3 Recognizing the Unknot and Calculating the Genus of a Circle in the Boundary of a 3-Manifold
    4.1.4 Is M^3 Irreducible and Boundary Irreducible?
    4.1.5 Is a Proper Surface lncompressible and Boundary Incompressible?
    4.1.6 Is M^3 Sufficiently Large?
    4.2 Cutting 3-Manifolds along Surfaces
    4.2.1 Normal Surfaces and Spines
    4.2.2 Triangulations vs. Handle Decompositions
    5 Algorithmic Recognition of S^3
    5.1 Links in a 3-Ball
    5.1.1 Compressing Discs and One-legged Crowns
    5.1.2 Thin Position of Links
    5.2 The Rubinstein Theorem
    5.2.1 2-Normal Surfaces
    5.2.2 Proof of the Rubinstein Theorem
    5.2.3 The Algorithm
    6 Classification of Haken 3-Manifolds
    6.1 Main Theorem
    6.2 The Waldhausen Theorem
    6.2.1 Deforming Homotopy Equivalences of Surfaces
    6.2.2 Deforming Homotopy Equivalences of 3-Manifolds to Homemorphisms
    6.3 Finiteness Properties for Surfaces
    6.3.1 Two Reformulations of the Recognition Theorem
    6.3.2 Abstract Extension Moves
    6.3.3 First Finiteness Property and a Toy Form of the Second
    6.3.4 Second Finiteness Property for Simple 3-Maaifolds
    6.4 Jacc-Shalen-Johannson Decomposition
    6.4.1 Improving Isotopy that Separates Surfaces
    6.4.2 Does M^3 Contain Essential Tori and Annuli?
    6.4.3 Different Types of Essential Tori and Annuli
    6.4.4 JSJ-Decomposition Exists and is Unique
    6.4.5 Seifert and I-Bundle Chambers
    6.4.6 Third Finiteness Property
    6.5 Extension Moves
    6.5.1 Description of General Extension Moves
    6.5.2 Structure of Chambers
    6.5.3 Special Extension Moves:Easy Case
    6.5.4 Difficult Case
    6.5.5 Recognition of Simple Stallings Manifolds with Periodic Monodromy
    6.5.6 Recognition of Simple Stallings Manifolds with Nonperiodic Monodromy
    6.5.7 Recognition of Quasi-Stallings Manifolds
    6.5.8 Subdivision of Solid Tori
    6.5.9 Proof of the Recognition Theorem
    7 3-Manifold Recognizer
    7.1 Computer Presentation of 3-Manifolds
    7.1.1 Cell Complexes
    7.1.2 3-Manifolds as Thickened Spines
    7.2 Simplifying Manifolds and Spines
    7.2.1 Coordinate Systems on Tori
    7.2.2 Reduction of Cell Structure
    7.2.3 Collapses
    7.2.4 Surgeries
    7.2.5 Disc Replacement Moves
    7.3 Labeled Molecules
    7.3.1 What is a Labeled Molecule?
    7.3.2 Creating a Labeled Molecule
    7.3.3 Assembling Seifert Atoms
    7.4 The Algorithm
    7.5 Tabulation
    7.5.1 Comments on the Table
    7.5.2 Hyperbolic Manifolds up to CompIexity 12
    7.5.3 Why the Table Contains no Duplicates?
    7.6 Other Applications of the 3-Manifold Recognizer
    7.6.1 Enumeration of Heegaard Diagrams of Genus 2
    7.6.2 3-Manifolds Represented by Crystallizations with ≤ 32 Vertices
    7.6.3 Classification of Crystallizations of Genus 2
    7.6.4 Recognition of Knots and Unknots
    7.7 Two-Step Enumeration of 3-Manifolds
    7.7.1 Relative Spines and Relative Complexity
    7.7.2 Assembling
    7.7.3 Modified Enumeration of Manifolds and Spines
    8 The Turaev-Viro Invariants
    8.1 The Turner Viro Invariants
    8.1.1 The Construction
    8.1.2 Turaev-Viro Type Invariants of Order r ≤ 3
    8.1.3 Construction and Properties of the ε-Invariant
    8.1.4 Turaev-Viro Invariants of Order r ≥ 3
    8.1.5 Computing Turaev-Viro Invariants
    8.1.6 More on ε-Invaniant
    8.2 3-Manifolds Having the Same Invariants of Turaev-Viro Type
    A Appendix
    A.1 Manifolds of Complexity ≤ 6
    A.2 Minimal Spines of Manifolds up to Complexity 6
    A.3 Minimal Spines of Some Manifolds of Complexity 7
    A.4 Tables of Turaev Viro Invariants
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证