0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 理论物理学 > 经典力学新基础 第二版

相同语种的商品

浏览历史

经典力学新基础   第二版


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
经典力学新基础 第二版
  • 书号:9787030236272
    作者:D.Hestense
  • 外文书名:New Foundations for Classical Mechanics
  • 装帧:精装
    开本:B5
  • 页数:720
    字数:886000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:O31 理论力学(一般力学)
  • 定价: ¥99.00元
    售价: ¥78.21元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

This book provides an introduction to geometric algebra as an unified language for physics and mathematics. It containes extensive applications to classical mechanics in a textbook format suitable for courses at an intermediate level. The text is supported by more than 200 diagrams to help develop geometrical and physical intuition. Besides covering the standard material for a course on the mechanics of particles and rigid bodies, the book introduces new, coordinate-free methods for rotational dynamics and orbital mechanics, developing these subjects to a level well beyond that of other textbooks. These methods have been widely applied in recent years to biomechanics and robotics, to computer vision and geometric design, to orbital mechanics in governmental and industrial space programs, as well as to other branches of physics. The book applies them to the major perturbations in the solar system, including the planetary perturbations of Mercury\'s perihelion.
Geometric algebra integrates conventional vector algebra (along with its established notations) into a system with all the advantages of quaternions and spinors. Thus, it increases the power of the mathematical language of classical mechanics while bringing it closer to the language of quantum mechanics. This book systematically develops purely mathematical applications of geometric algebra useful in physics, including extensive applications to linear algebra and transformation groups. It contains sufficient material for a course on mathematical topics alone.
The second edition has been expanded by nearly a hundred pages on relativistic mechanics. The treatment is unique in its exclusive use of geometric algebra and in its detailed treatment of spacetime maps, collisions, motion in uniform fields and relativistic precession. It conforms with Einstein\'s view that the Special Theory of Relativity is the culmination of developments in classical mechanics
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    Chapter 1: Origins of Geometric Algebra
    1-1. Geometry as Physics
    1-2. Number and Magnitude
    1-3. Directed Numbers
    1-4. The Inner Product
    1-5. The Outer Product
    1-6. Synthesis and Simplification
    1-7. Axioms for Geometric Algebra
    Chapter 2: Developments in Geometric Algebra
    2-1. Basic Identities and Definitions
    2-2. The Algebra of a Euclidean Plane
    2-3. The Algebra of Euclidean 3-Space
    2-4. Directions, Projections and Angles
    2-5. The Exponential Function
    2-6. Analytic Geometry
    2-7. Functions of a Scalar Variable
    2-8. Directional Derivatives and Line Integrals
    Chapter 3: Mechanics of a Single Particle
    3-1. Newton's Program
    3-2. Constant Force
    3-3. Constant Force with Linear Drag
    3-4. Constant Force with Quadratic Drag
    3-5. Fluid Resistance
    3-6. Constant Magnetic Field
    3-7. Uniform Electric and Magnetic Fields
    3-8. Linear Binding Force
    3-9. Forced Oscillations
    3-10. Conservative Forces and Constraints
    Chapter 4: Central Forces and Two-Particle Systems
    4-1. Angular Momentum
    4-2. Dynamics from Kinematics
    4-3. The Kepler Problem
    4-4. The Orbit in Time
    4-5. Conservative Central Forces
    4-6. Two-particle Systems
    4-7. Elastic Collisions
    4-8. Scattering Cross Sections
    Chapter 5: Operators and Transformations
    5-1. Linear Operators and Matrices
    5-2. Symmetric and Skewsymmetric Operators
    5-3. The Arithmetic of Reflections and Rotations
    5-4. Transformation Groups
    5-5. Rigid Motions and Frames of Reference
    5-6. Motion in Rotating Systems
    Chapter 6: Many-Particle Systems
    6-1. General Properties of Many-Particle Systems
    6-2. The Method of Lagrange
    6-3. Coupled Oscillations and Waves
    6-4. Theory of Small Oscillations
    6-5. The Newtonian Many Body Problem
    Chapter 7: Rigid Body Mechanics
    7-1. Rigid Body Modeling
    7-2. Rigid Body Structure
    7-3. The Symmetrical Top
    7-4. Integrable Cases of Rotational Motion
    7-5. Rolling Motion
    7-6. Impulsive Motion
    Chapter 8: Celestial Mechanics
    8-1. Gravitational Forces, Fields and Torques
    8-2. Perturbations of Kepler Motion
    8-3. Perturbations in the Solar System
    8-4. Spinor Mechanics and Perturbation Theory
    Chapter 9: Relativistic Mechanics
    9-1. Spacetime and Its Representations
    9-2. Spacetime Maps and Measurements
    9-3. Relativistic Particle Dynamics
    9-4. Energy-Momentum Conservation
    9-5. Relativistic Rigid Body Mechanics
    Appendix
    A Spherical Trigonometry
    B Elliptic Functions
    C Units, Constants and Data
    Hints and Solutions for Selected Exercises
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证