0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 理学 > 0701 数学 > 数学分析(第二册)

浏览历史

数学分析(第二册)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
数学分析(第二册)
  • 电子书不支持下载,仅供在线阅读
  • 书号:9787030425027
    作者:周民强
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:
    字数:
    语种:
  • 出版社:
    出版时间:2014-12-18
  • 所属分类:
  • 定价: ¥45.00元
    售价: ¥27.00元
  • 图书介质:
    按需印刷 电子书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书讲述的是高等数学的基础内容——数学分析,其核心内容是微积分学,全书共三册.本书为第二册,共分六章,包括定(Riemann)积分、反常积分、常数项级数、函数项级数、幂级数与Tavlor级数、Fourier分析初步.
本书是由作者在北京大学数学科学学院多年教学所使用的讲义基础上修改而成,内容丰富、深入浅出.对较难理解的定理、定义以及可深入探讨的问题,本书以加注的形式予以解说,以利于读者更好地接受新知识.在章末附有后记,意在为读者更清楚地了解知识背景,更迅速地提高数学能力创造条件.本书选用适量有代表性、启发性的例题,还选人足够数量的习题和思考题.习题和思考题中,既有一般难度的题目,也有较难的题目,供读者酌情选做.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前沿
    致读者
    绪论积分史简述………1
    第7章定(Riemann)积分………3
    7.1定(Riemann)积分的概念……3
    7.1.1曲边梯形的面积问题…3
    7.1.2定积分的定义………4
    7.2Darboux上、下和,上、下积分…7
    7.2.1Darboux上、下和……8
    7.2.2Darboux上、下积分…10
    7.3函数可积的充分必要条件,可积函数类………12
    7.3.1函数可积的充分必要条件………12
    7.3.2可积函数类…14
    7.4微积分基本定理,定积分的基本性质…18
    7.4.1Newton_Leibniz公式18
    7.4.2定积分的基本性质……22
    7.5变限积分,原函数存在的充分条件……29
    7.6定积分的间接计算法…35
    7.6.1换元积分法…35
    7.6.2分部积分法…40
    7.7定积分中值定理………45
    7.7.1定积分第一中值公式………46
    7.7.2定积分第二中值公式………49
    7.8定积分在几何与力学中的初步应用……53
    7.8.1平面区域的面积……53
    7.8.2用平行截面面积求立体体积……59
    7.8.3曲线弧长……63
    7.8.4旋转体的侧面积……68
    *7.8.5定积分应用的朴素定式——点位微分的积累……70
    *7.8.6定积分在力学巾的初步应用……71
    7.9定积分的近似计算……77
    7.9.1从积分和式求近似值77
    7.9.2从被积函数大小估算近似值……86
    后记………87
    第8章反常积分………99
    8.1函数在无穷区间上的积分……100
    8.1.1无穷区间上的积分定义………100
    8.1.2积分的基本性质……103
    8.2无穷区间上积分收敛与发散的判别法…106
    8.2.1非负函数积分敛散性的比较判别法………106
    8.2.2积分的绝对收敛……112
    8.2.3被积函数的主部分离法………114
    8.2.4一般函数积分敛散性的判别法………115
    8.3有穷区间上无界函数的积分——瑕积分………122
    8.3.1瑕积分的定义………122
    8.3.2积分的基本性质……125
    8.4瑕积分收敛与发散的判别法…127
    8.4.1非负函数积分敛散性的比较判别法………127
    8.4.2瑕积分的绝对收敛……131
    8.4.3一般函数积分敛散性的判别法133
    8.4.4带瑕点无穷区间上积分敛散性的判别法…135
    后记…………138
    第9章常数项级数……141
    9.1级数收敛的概念和必要条件…141
    9.2收敛级数的运算牲质…145
    9.3正项级数收敛与发散的判别法…………147
    9.3.1正项级数收敛的特征…147
    9.3.2通项比较判别法……151
    9.3.3比值判别法,根值判别法……157
    9.3.4推广的比值型和根值型判别法………162
    9.3.5积分判别法………165
    9.4般项级数收敛与发散的判别法………170
    9.4.1级数收敛的充分必要条件……170
    9.4.2级数的绝对收敛与条件收敛…172
    9.4.3交错级数收敛的判别法………175
    9.4.4乘积项级数收敛的判别法……178
    *9.5级数项序的重新排列…184
    *9.6两个级数的乘积………186
    后记…………189
    第10章函数项级数…200
    10.1函数项级数致收敛的概念…203
    10.2致收敛函数项级数的运算性质………206
    10.3函数项级数致收敛的判别法…………208
    10.3.1Cauchv准则…………208
    10.3.2M(最值)判别法……212
    10.3.3函数乘积项级数致收敛的Abel判别法和Dirichlet判别法…217
    10.4函数性质的传递——极限次序的交换……………222
    10.4.1连续性质的传递……223
    10.4.2积分性质的传递……227
    10.4.3微分性质的传递……230
    后记…………234
    第11章幂级数与Taylor级数…244
    11.1幂级数收敛区域的特征——收敛半径…………244
    11.2幂级数收敛半径的求法………246
    11.3幂级数的致收敛及其和函数的性质…………251
    11.4函数的幂级数展式Taylor级数…256
    11.4.1函数的Taylor级数的概念…257
    11.4.2判定函数的Taylor级数展式的方法……259
    11.4.3应用举例…265
    11.5多项式逼近连续函数…………268
    后记…………273
    第12章Fourier分析初步………283
    12.1三角函数系的正交性、函数的Fourier级数…284
    12.2Fourier系数的性质…287
    12.3Fourier级数的(点)收敛……291
    12.3.1Dirichlet积分、局部化原理…291
    12.3.2Fourier级数收敛的判别法…294
    12.4其他函数的Fourier级数……305
    12.4.1周期为2l的函数……305
    12.4.2仅定义在有界区间上的函数…306
    12.5 Fourier级数的其他收敛意义……311
    12.5.1算术平均求和…311
    12.5.2封闭系,均方收敛…………314
    12.5.3一致收敛,Fourier级数的微分和积分………320
    后记……324
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证