0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > 偏微分方程数值解的有效条件数(第二版)(英文)

相同语种的商品

相同作者的商品

浏览历史

偏微分方程数值解的有效条件数(第二版)(英文)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
偏微分方程数值解的有效条件数(第二版)(英文)
  • 书号:9787030464101
    作者:李子才,黄宏财,魏益民,程宏达
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:
    字数:
    语种:en
  • 出版社:
    出版时间:
  • 所属分类:
  • 定价: ¥138.00元
    售价: ¥109.02元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Chapter 1 E.ective Condition Number1
    1.1 Introduction1
    1.2 Preliminary3
    1.3 Symmetric Matrices5
    1.3.1 De-nitions of e.ective condition numbers6
    1.3.2 A posteriori computation8
    1.4 Overdetermined Systems10
    1.4.1 Basic algorithms10
    1.4.2 Re-nements of (1.4.10)14
    1.4.3 Criteria16
    1.4.4 Advanced re-nements17
    1.4.5 E.ective condition number in p-norms19
    1.5 Linear Algebraic Equations by GE or QR21
    1.6 Application to Numerical PDE23
    1.7 Application to Boundary Integral Equations33
    1.8 Weighted Linear Least Squares Problems40
    1.8.1 E.ective condition number41
    1.8.2 Perturbation bounds44
    1.8.3 Applications and comparisons45
    Chapter 2 Collocation Tre.tz Methods 47
    2.1 Introduction47
    2.2 CTM for Motz's Problem48
    2.3 Bounds of E.ective Condition Number51
    2.4 Stability for CTM of Rp = 1 56
    2.5 Numerical Experiments57
    2.5.1 Choice of Rp 57
    2.5.2 Extreme accuracy of D0 60
    2.6 The GCTM Using Piecewise Particular Solutions60
    2.7 Stability Analysis of the GCTM64
    2.7.1 Tre.tz methods64
    2.7.2 Collocation Tre.tz methods66
    2.8 Method of Fundamental Solutions67
    2.9 Collocation Methods Using RBF71
    2.10 Comparisons Between Cond e. and Cond73
    2.10.1 The CTM using particular solutions for Motz's problem73
    2.10.2 The MFS and the CM-RBF74
    2.11 A Few Remarks74
    Chapter 3 Simpli-ed Hybrid Tre.tz Methods6
    3.1 The Simpli-ed Hybrid TM76
    3.1.1 Algorithms76
    3.1.2 Error analysis80
    3.1.3 Integration approximation80
    3.2 Stability Analysis for Simpli-ed Hybrid TM81
    Chapter 4 Penalty Tre.tz Method Coupled with FEM88
    4.1 Introduction88
    4.2 Combinations of TM and Adini's Elements90
    4.2.1 Algorithms90
    4.2.2 Basic theorem93
    4.2.3 Global superconvergence95
    4.3 Bounds of Cond e. for Motz's Problem99
    4.4 E.ective Condition Number of One and In-nity Norms105
    4.5 Concluding Remarks107
    Chapter 5 Tre.tz Methods for Biharmonic Equations with Crack Singularities109
    5.1 Introduction109
    5.2 Collocation Tre.tz Methods110
    5.2.1 Three crack models110
    5.2.2 Description of the method112
    5.2.3 Error bounds113
    5.3 Stability Analysis114
    5.3.1 Upper bound for .max(F)114
    5.3.2 Lower bound for .min(F)115
    5.3.3 Upper bound for Cond e. and Cond118
    5.4 Proofs of Important Results Used in Section 5.3 119
    5.4.1 Basic theorem119
    5.4.2 Proof of Lemma 5.4.3123
    5.4.3 Proof of Lemma 5.4.4 125
    5.5 Numerical Experiments130
    5.6 Concluding Remarks133
    Chapter 6 The Method of Fundamental Solutions for Mixed Boundary Value Problems of Laplace's Equation135
    6.1 Introduction135
    6.2 Method of Fundamental Solutions137
    6.3 Dirichlet Problems on Disk Domains140
    6.3.1 Eigenvalues of the MFS140
    6.3.2 New approaches142
    6.3.3 Eigenvalues in terms of power series144
    6.3.4 Asymptotes of Cond147
    6.4 Neumann Problems in Disk Domains148
    6.4.1 Description of algorithms148
    6.4.2 Condition numbers of the MFS151
    6.5 Mixed Boundary Problems in Bounded Simply-Connected Domains155
    6.5.1 Tre.tz methods155
    6.5.2 The collocation Tre.tz methods159
    6.5.3 Bounds of condition numbers and e.ective condition numbers161
    6.5.4 Developments and evaluations on the MFS162
    6.5.5 The inverse inequality (6.5.9) 163
    6.6 Numerical Experiments166
    Chapter 7 Finite Di.erence Method171
    7.1 Introduction171
    7.2 Shortley-Weller Di.erence Approximation171
    7.2.1 A Lemma173
    7.2.2 Bounds for Cond EE175
    7.2.3 Bounds for Cond e179
    Chapter 8 Boundary Penalty Techniques of FDM184
    8.1 Introduction184
    8.2 Finite Di.erence Method185
    8.2.1 Shortley-Weller di.erence approximation186
    8.2.2 Superconvergence of solution derivatives186
    8.2.3 Bounds for Cond e188
    8.3 Penalty-Integral Techniques188
    8.4 Penalty-Collocation Techniques194
    8.5 Relations Between Penalty-Integral and Penalty- Collocation Techniques200
    8.6 Concluding Remarks200
    Chapter 9 Boundary Singularly Problems by FDM202
    9.1 Introduction202
    9.2 Finite Di.erence Method203
    9.3 Local Re-nements of Di.erence Grids204
    9.3.1 Basic results205
    9.3.2 Nonhomogeneous Dirichlet and Neumann boundary conditions211
    9.3.3 A remark 214
    9.3.4 A view on assumptions A1.A4 216
    9.3.5 Discussions and comparisons217
    9.4 Numerical Experiments 217
    9.5 Concluding Remarks224
    Chapter 10 Singularly Perturbed Di.erential Equations by the Upwind Di.erence Scheme226
    10.1 Introduction226
    10.2 The Upwind Di.erence Scheme227
    10.3 Properties of the Operator of SPDE and its Discretization229
    10.4 Stability Analysis231
    10.4.1 The traditional condition number 232
    10.4.2 E.ective condition number234
    10.4.3 Via the maximum principle236
    10.5 Numerical Experiments and Concluding Remarks238
    Chapter 11 Finite Element Method Using Local Mesh Re-nements243
    11.1 Introduction 243
    11.2 Optimal Convergence Rates244
    11.3 Homogeneous Boundary Conditions250
    11.4 Nonhomogeneous Boundary Conditions255
    11.5 Intrinsic View of Assumption A2 and Improvements of Theorem 11.4.1 259
    11.5.1 Intrinsic view of assumption A2 259
    11.5.2 Improvements of Theorem 11.4.1 260
    11.6 Numerical Experiments262
    Chapter 12 Hermite FEM for Biharmonic Equations267
    12.1 Introduction267
    12.2 Description of Numerical Methods268
    12.3 Stability Analysis270
    12.3.1 Bounds of Cond 270
    12.3.2 Bounds of Cond e271
    12.4 Numerical Experiments274
    Chapter 13 Truncated SVD and Tikhonov Regularization280
    13.1 Introduction280
    13.2 Algorithms of Regularization283
    13.3 New Estimates of Cond and Cond e 284
    13.4 Brief Error Analysis 290
    Chapter 14 Small Sample Statistical Condition Estimation for the Generalized Sylvester Equation295
    14.1 Introduction295
    14.2 E.ective Condition Numbers299
    14.3 Small Sample Statistical Condition Estimation303
    14.3.1 Normwise perturbation analysis305
    14.3.2 Mixed and componentwise perturbation analysis307
    14.4 Numerical Examples308
    14.5 Concluding Remarks315
    Appendix A De-nitions and Formulas316
    A.1 Square Systems316
    A.1.1 Symmetric and positive de-nite matrices317
    A.1.2 Symmetric and nonsingular matrices319
    A.1.3 Nonsingular matrices319
    A.2 Overdetermined Systems320
    A.3 Underdetermined Systems321
    A.4 Method of Fundamental Solutions322
    A.5 Regularization323
    A.5.1 The Truncated singular value decomposition324
    A.5.2 The Tikhonov regularization324
    A.6 p-Norms325
    A.7 Conclusions326
    Epilogue 327
    Bibliography329
    Index345
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证