0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > Lipschitz边界上的奇异积分与Fourier理论(英文版)

浏览历史

Lipschitz边界上的奇异积分与Fourier理论(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Lipschitz边界上的奇异积分与Fourier理论(英文版)
  • 书号:9787030618399
    作者:
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:11,306
    字数:
    语种:zh-Hant
  • 出版社:科学出版社
    出版时间:2019-07-01
  • 所属分类:
  • 定价: ¥168.00元
    售价: ¥132.72元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

  The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and sur faces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dun ford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Singular Integrals and Fourier Multipliers on Infinite Lipschitz Curves 1
    1.1 Convolutions and Differentiation on Lipschitz Graphs 2
    1.2 Quadratic Estimates for Type co Operators 6
    1.3 Fourier Transform and the Inverse Fourier Transform on Sectors 6
    1.4 Convolution Singular Integral Operators on the Lipschitz Curves 22
    1.5 Lp-Fourier Multipliers on Lipschitz Curves 29
    1.6 Remarks 41
    References 42
    2 Singular Integral Operators on Closed Lipschitz Curves 43
    2.1 Preliminaries 44
    2.2 Fourier Transforms Between S and PS(π) 48
    2.3 Singular Integrals on Starlike Lipschitz Curves 54
    2.4 Holomorphic H*-Functional Calculus on Starlike Lipschitz Curves 61
    2.5 Remarks 65
    References 65
    3 Clifford Analysis, Dirac Operator and the Fourier Transform 67
    3.1 Preliminaries on Clifford Analysis 67
    3.2 Monogenic Functions on Sectors 74
    3.3 Fourier Transforms on the Sectors 79
    3.4 Mobius Covariance of Iterated Dirac Operators 94
    3.5 The Fueter Theorem 100
    3.6 Remarks 114
    References 115
    4 Convolution Singular Integral Operators on Lipschitz Surfaces 117
    4.1 Clifford-Valued Martingales 117
    4.2 Martingale Type T(b) Theorem 125
    4.3 Clifford Martingale O-Equivalence Between S(f) and f* 140
    4.4 Remarks 147
    References 147
    5 Holomorphic Fourier Multipliers on Infinite Lipschitz Surfaces 149
    5.1 Singular Convolution Integrals on Infinite Lipschitz Surfaces 149
    5.2 H*-Functional Calculus of Functions of n Variables 156
    5.3 H*-Functional Calculus of Functions of One Variable 162
    References 166
    6 Bounded Holomorphic Fourier Multipliers on Closed Lipschitz Surfaces 169
    6.1 Monomial Functions in Rn 169
    6.2 Bounded Holomorphic Fourier Multipliers 186
    6.3 Holomorphic Functional Calculus of the Spherical Dirac Operator 200
    6.4 The Analogous Theory in Rn 203
    6.5 Hilbert Transforms on the Sphere and Lipschitz Surfaces 206
    6.6 Remarks 219
    References 219
    7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces 221
    7.1 The Fractional Fourier Multipliers on Lipschitz Curves 224
    7.2 Fractional Fourier Multipliers on Starlike Lipschitz Surfaces 239
    7.3 Integral Representation of Sobolev-Fourier Multipliers 254
    7.4 The Equivalence of Hardy-Sobolev Spaces 270
    7.5 Remarks 272
    References 273
    8 Fourier Multipliers and Singular Integrals on Cn 275
    8.1 A Class of Singular Integral Operators on the n-ComplexUnit Sphere 275
    8.2 Fractional Multipliers on the Unit Complex Sphere 289
    8.3 Fourier Multipliers and Sobolev Spaces on Unit Complex Sphere 298
    References 300
    Bibliography 303
    Index 305
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证