本书提出了新的办法来解决从均相催化中分离反应产物的难题。新流程涉及低浸出负载型催化剂,可溶性支持措施,如聚合物和树枝状大分子,不常用的溶剂,例如水,含氟有机物,离子液体和超临界流体。不同于其他书籍,除了所涉及的化学,本书着眼于流程的设计,并与现有流程进行了比较,并给出了实例。内容主要包括:新工艺分离的产品解决方案,含有均相催化剂;催化剂对不溶性或可溶性支持-固定床催化剂-连续流或超滤;双相系统:水-有机氟-有机液体,离子液体-有机液体,超临界流体(单相或双相与水,有机或离子液体);对比当前的流程,涉及大气或低温蒸馏;考察化学与工艺设计;每种方案的利弊等。
本书可供催化化学专业研究生,化工、医药工业科研人员参考使用。
样章试读
目录
- CHAPTER 1 HOMOGENEOUS CATALYSIS-ADVANTAGES AND PROBLEMS
1.1 Catalysis
1.2 Catalyst Stability
1.2.1 THERMALLY INDUCED DECOMPOSITION
1.2.2 CHEMICALLY INDUCED DECOMPOSITION
1.2.3 PHYSICAL LOSS FROM THE PROCESS
1.3 Layout of the Book
1.4 References
CHAPTER 2 CLASSICAL HOMOGENEOUS CATALYST SEPARATION TECHNOLOGY
2.1.1 Coverage of Chapter
2.2 General Process Considerations
2.3 Everything is a Reactor
2.4 Overview of Separation Technologies
2.4.1 TRADITIONAL COBALT WITH CATALYST DECOMPOSITION
2.4.2 UNION CARBIDE-DAVY GAS RECYCLE PROCESS
2.4.3 LIQUID RECYCLE
2.4.4 BIPHASIC SYSTEMS; WATER-ORGANIC
2.4.5 INDUCED PHASE SEPARATION
2.4.6 NON-AQUEOUS PHASE SEPARATION
2.4.6.1 NAPS Using a Non-Polar Catalyst
2.4.6.2 NAPS Using a Polar Catalyst
2.4.6.3 Ligand Structure and Solubility Properties
2.5 Hypothetical processes-How Might the Product be Separated from the Catalyst?
2.5.1 PROPENE HYDROFORMYLATION
2.5.2 1-OCTENE HYDROFORMYLATION
2.5.3 ALLYL ALCOHOL
2.5.4 METHOXYVINYLNAPHTHALENE
2.5.5 SEPARATION TECHNOLOGY FOR LESS STABLE CATALYSTS
2.5.5.1 Mitsubishi TPPO/TPP Separation
2.5.5.2 Organic Polymer for Catalyst Stabilization
2.6 Real-World Complications
2.6.1 ORGANOPHOSPHORUS LIGAND DEGRADATIONS
2.6.1.1 Oxidation
2.6.1.2 Alkyldiarylphosphine Formation
2.6.1.3 Ligand Scrambling
2.6.1.4 Phosphine Reactions with Conjugated Systems
2.6.1.5 Phosphite Oxidation
2.6.1.6 Simple Phosphite Hydrolysis
2.6.1.7 Poisoning Phosphite Formation
2.6.1.8 Aldehyde Acid Formation
2.6.1.9 Acidity Control
2.6.2 SEPARATING BYPRODUCTS FROM REACTANTS OR PRODUCTS
2.6.2.1 Alkene Hydrogenation
2.6.2.2 Alkene Isomerization
2.6.2.3 Aldehyde Dimerization and Trimerization
2.6.2.4 Formation of Conjugated Carbonyls
2.6.3 INTRINSIC CATALYST DEACTIVATION
2.7 Further Separation Challenges
2.7.1 RECOVERY OF METAL VALUES FROM A SPENT CATALYST
2.7.1.1 Catalyst Containment and Capture Technologies
2.8 Concluding Remarks
2.9 References
CHAPTER 3 SUPPORTED CATALYSTS
Immobilisation of Tailor-made Homogeneous Catalysts
3.1 Introduction
3.2 Short Historical Overview
3.3 Polystyrene Supported Catalysts
3.4 Silica Supported Catalyst
3.5 Catalysis in Interphases
3.6 Ordered Mesoporous Support
3.7 Non-covalently Supported Catalysts
3.8 Supported Aqueous Phase Catalysis
3.9 Process Design [71]
3.10 Concluding Remarks
3.11 References
CHAPTER 4 SEPARATION BY SIZE-EXCLUSION FILTRATION
Homogeneous Catalysts Applied in Membrane Reactors
4.1 Introduction
4.2 Reactors
4.2.1 DEAD-END FILTRATION REACTORS
4.2.2 CROSS-FLOW FILTRATION REACTORS
4.3 Membranes
4.3.1 CLASSIFICATION OF FILTRATION TYPES
4.3.2 MEMBRANE MATERIALS
4.4 Dendrimer Supported Catalysts
4.4.1 KHARASCH ADDITION REACTION
4.4.2 ALLYLIC SUBSTITUTION REACTIONS
4.4.3 HYDROVINYLATION REACTION
4.4.4 HYDROGENATION REACTION
4.4.5 MICHAEL ADDITION REACTION
4.5 Dendritic Effects
4.6 Unmodified or Non-dendritic Catalysts
4.6.1 HYDROGENATION
4.6.2 PHASE TRANSFER CATALYSIS
4.7 Soluble Polymer Supported Catalysts
4.8 Concluding Remarks
4.9 References
CHAPTER 5 BIPHASIC SYSTEMS: WATER-ORGANIC
5.1 Introduction
5.2 Immobilization with the Help of Liquid Supports
5.2.1 GENERAL
5.2.2 BIPHASIC SYSTEMS
5.2.3 AQUEOUS BIPHASIC CATALYSIS
5.2.3.1 Water as a Solvent
5.2.3.2 Aqueous-phase Catalysis as a Unit Operation
5.2.4 EXAMPLES OF AQUEOUS BIPHASIC CATALYSIS
5.2.4.1 Hydroformylation (Ruhrchemie/Rhone-Poulenc[RCH/RP] process)
5.2.4.2 Other Industrially UsedAqueous-biphasic Processes
5.2.4.3 Short Overview of Other Reaction
5.2.5 OTHER PROPOSALS FOR WATER-BIPHASIC SYSTEMS
5.2.6 INTERLUDE-BIPHASIC SYSTEMS: ORGANIC-ORGANIC
5.3 Recycle and Recovery of Aqueous Catalysts
5.3.1 RECYCLING
5.3.2 RECOVERY
5.3.3 ECONOMICS OF THE PROCESS
5.3.4 ENVIRONMENTAL ASPECTS
5.4 Concluding Remarks
5.5 References
CHAPTER 6 FLUOROUS BIPHASIC CATALYSIS
6.1 Introduction
6.2 Alkene Hydrogenation
6.3 Alkene Hydrosilation
6.4 Alkene Hydroboration
6.5 Alkene Hydroformylation
6.6 Alkene Epoxidation
6.7 Other Oxidation Reactions
6.8 Allylic Alkylation
6.9 Heck, Stille, Suzuki, Sonagashira and Related Coupling Reactions
6.10 Asymmetric Alkylation of Aldehydes
6.11 Miscellaneous Catalytic Reactions
6.12 Fluorous Catalysis Without Fluorous Solvents
6.13 Continuous Processing
6.14 Process Synthesis for the Fluorous Biphasic Hydroformylation of 1-Octene
6.15 Conclusions
6.16 Acknowledgement
6.17 References
CHAPTER 7 CATALYST RECYCLING USING IONIC LIQUIDS
7.1 Introduction
7.1.1 INTRODUCTION TO IONIC LIQUIDS
7.1.2 INTRODUCTION TO TRANSITION METAL CATALYSIS IN IONIC LIQUIDS
7.1.3 MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS-ENGINEERING ASPECTS
7.2 Liquid-liquid Biphasic, Rh-catalysed Hydroformylation Using Ionic Liquids
7.3 Rhodium Catalysed Hydroformylation Using Supported Ionic Liquid Phase SILP) Catalysis
7.3.1 SUPPORTED IONIC LIQUIDS BY CHEMICAL BONDS
7.3.2 SUPPORTED IONIC LIQUIDS BY IMPREGNATION
7.4 Costs And Economics
7.5 Conclusions
7.6 References
CHAPTER 8 SUPERCRITICAL FLUIDS
Compressed Gases as Mobile Phase and Catalyst Support
8.1 Introduction to supercritical fluids
8.2 Applications of scCO2 in Catalyst Immobilisation
8.2.1 CO2 AS THE ONLY MASS SEPARATING AGENT
8.2.2 BIPHASIC SYSTEMS CONSISTING OF CO2 AND LIQUID PHASES
8.2.2.1 Water as the Liquid Phase
8.2.2.2 Poly(ethyleneglycol) (PEG) as the Liquid Phase
8.2.2.3 Ionic Liquids as the Liquid Phase
8.2.3 BIPHASIC SYSTEMS CONSISTING OF CO2 AND SOLID PHASES
8.2.3.1 Inorganic Supports
8.2.3.2 Organic Polymer Supports
8.3 Economic Evaluation and Summary
8.3.1 POTENTIAL FOR SCALE-UP
8.4 Summary
8.5 References
CHAPTER 9 AREAS FOR FURTHER RESEARCH
9.1 Introduction
9.2 Conventional Separation Methods (See Chapter 2)
9.3 Catalysts on Insoluble Supports (Chapter 3)
9.4 Catalysts on Soluble Supports (Chapter 4)
9.5 Aqueous Biphasic Catalysis (Chapter 5)
9.6 Fluorous Biphasic Catalysis (Chapter 6)
9.7 Reactions Involving Ionic Liquids (Chaoter 7)
9.8 Reactions Using Supercritical Fluids (Chapter 8)
9.9 Conclusions
9.10 References