0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 代数/数论 > 李群与李代数III:李群和李代数的结构

相同语种的商品

浏览历史

李群与李代数III:李群和李代数的结构


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
李群与李代数III:李群和李代数的结构
  • 书号:9787030235060
    作者:Onishchik
  • 外文书名:Lie Groups and Lie Algebras Ⅲ:Structure of Lie Groups and Lie Algebras
  • 装帧:圆脊精装
    开本:B5
  • 页数:260
    字数:312
    语种:英文
  • 出版社:科学出版社
    出版时间:2016-05-25
  • 所属分类:O15 代数、数论、组合理论
  • 定价: ¥118.00元
    售价: ¥93.22元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

The book contains a comprehensive account of the structure andclassification of Lie groups and finite-dimensional Lie algebras (inCluding semisimple, solvable, and of general type) In particular,a modem approach to the description of automorphisms and gradingsof semisimple Lie algebras is given. A special chapter is devotedto models of the exceptional Lie algebras. The book contains manytables and will serve as a reference. At the same time many\\\\\\\'resultsare accompanied by short proofs.
Onishchik and Vinberg are internationally known specialists intheir field; they are also well known for their monograph “Lie Groupsand Algebraic Groups” (Springer-Verlag 1990).
The book will be immensely useful to graduate students indifferential geometry’, algebra and theoretical physics.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Introduction
    Chapter 1 General Theorems
    §1. Lie's and Engel's Theorems
    1.1. Lie's Theorem
    1.2. Generalizations of Lie's Theorem
    1.3. Engel's Theorem and Corollaries to It
    1.4. An Analogue of Engel's Theorem in Group Theory
    §2. The Cartan Criterion
    2.1. Invariant Bilinear Forms
    2.2. Criteria of Solvability and Semisimplicity
    2.3. Factorization into Simple Factors
    §3. Complete Reducibility of Representations and Triviality of the Cohomology of Semisimple Lie Algebras
    3.1. Cohomological Criterion of Complete Reducibility
    3.2. The Casimir Operator
    3.3. Theorems on the Triviality of Cohomology
    3.4. Complete Reducibility of Representations
    3.5. Reductive Lie Algebras
    §4. Levi Decomposition
    4.1. Levi's Theorem
    4.2. Existence of a Lie Group with a Given Tangent Algebra
    4.3. Malcev's Theorem
    4.4. Classification of Lie Algebras with a Given Radical
    §5. Linear Lie Groups
    5.1. Basic Notions
    5.2. Some Examples
    5.3. Ado's Theorem
    5.4. Criteria of Linearizability for Lie Groups. Linearize
    5.5. Sufficient Linearizability Conditions
    5.6. Structure of Linear Lie Groups
    §6. Lie Groups and Algebraic Groups
    6.1. Complex and Real Algebraic Groups
    6.2. Algebraic Subgroups and Subalgebras
    6.3. Semisimple and Reductive Algebraic Groups
    6.4. Polar Decomposition
    §7. Complexification and Real Forms
    7.1. Complexification and Real Forms of Lie Algebras
    7.2. Complexification and Real Forms of Lie Groups
    7.3. Universal Complexification of a Lie Group
    §8. Splittings of Lie Groups and Lie Algebras
    8.1. Malcev Splittable Lie Groups and Lie Algebras
    8.2. Definition of Splittings of Lie Groups and Lie Algebras
    8.3. Theorem on the Existence and Uniqueness of Splittings
    §9. Cartan Subalgebras and Subgroups. Weights and Roots
    9.1. Representations of Nilpotent Lie Algebras
    9.2. Weights and Roots with Respect to a Nilpotent Subalgebra
    9.3. Cartan Subalgebras
    9.4. Cart an Subalgebras and Root Decompositions of Semisimple Lie Algebras
    9.5. Cartan Subgroups
    Chapter 2 Solvable Lie Groups and Lie Algebras.
    §1. Examples
    §2. Triangular Lie Groups and Lie Algebras
    §3. Topology of Solvable Lie Groups and Their Subgroups
    3.1. Canonical Coordinates
    3.2. Topology of Solvable Lie Groups
    3.3. Aspherical Lie Groups
    3.4. Topology of Subgroups of Solvable Lie Groups
    §4. Nilpotent Lie Groups and Lie Algebras
    4.1. Definitions and Examples
    4.2. Malcev Coordinates
    4.3. Cohomology and Outer Automorphisms
    §5. Nilpotent Radicals in Lie Algebras and Lie Groups
    5.1. Nilradical
    5.2. Nilpotent Radical
    5.3. Unipotent Radical
    §6. Some Classes of Solvable Lie Groups and Lie Algebras
    6.1. Characteristically Nilpotent Lie Algebras
    6.2. Filiform Lie Algebras
    6.3. Nilpotent Lie Algebras of Class 2
    6.4. Exponential Lie Groups and Lie Algebras
    6.5. Lie Algebras and Lie Groups of Type (I)
    §7. Linearizability Criterion for Solvable Lie Groups
    Chapter 3 Conlplex Semisimple Lie Groups and Lie Algebras
    §1. Root Systems
    1.1. Abstract Root Systems
    1.2. Root Systems of Reductive Groups
    1.3. Root Decompositions and Root Systems for Classical Complex Lie Algebras
    1.4. Weyl Chambers and Simple Roots
    1.5. Borel Subgroups and Subalgebras
    1.6. The Weyl Group
    1.7. The Dynkin Diagram and the Cartan Matrix
    1.8. Classification of Admissible Systems of Vectors and Root Systems
    1.9. Root and Weight Lattices
    1.10. Chevalley Basis
    §2. Classification of Complex Semisimple Lie Groups and Their Linear Representations
    2.1. Uniqueness Theorems for Lie Algebras
    2.2. Uniqueness Theorem for Linear Representations
    2.3. Existence Theorems
    2.4. Global Structure of Connected Semisimple Lie Groups
    2.5. Classification of Connected Semisimple Lie Groups
    2.6. Linear Representations of Connected Reductive Algebraic Groups
    2.7. Dual Representations and Bilinear Invariants
    2.8. The Kernel and the Image of a Locally Faithful Linear Representation
    2.9. The Casimir Operator and Dynkin Index
    2.10. Spinor Group and Spinor Representation
    §3. Automorphisms and Gradings
    3.1. Description of the Group of Automorphisms
    3.2. Quasitori of Automorphisms and Gradings
    3.3. Homogeneous Semisimple and Nilpotent Elements
    3.4. Fixed Points of Automorphisms
    3.5. One-dimensional Tori of Automorphisms and Z-gradings
    3.6. Canonical Form of an Inner Semisimple Automorphism
    3.7. Inner Automorphisms of Finite Order and Zm gradings of Inner Type
    3.8. Quasitorus Associated with a Component of the Group of Automorphisms
    3.9. Generalized Root Decomposition
    3.10. Canonical Form of an Outer Semisimple Automorphism
    3.11. Outer Autoniorphisms of Finite Order and Zm gradings of Outer Type
    3.12. Jordan Gradings of Classical Lie Algebras
    3.13. Jordan Gradings of Exceptional Lie Algebras
    Chapter 4 Real Seniisimple Lie Groups and Lie Algebras
    §1. Classification of Real Semisimple Lie Algebras
    1.1. Real Forms of Classical Lie Groups and Lie Algebras
    1.2. Compact Real Form
    1.3. Real Forms and Involutory Automorphisms
    1.4. Involutory Automorphisms of Complex Simple Algebras
    1.5. Classification of Real Simple Lie Algebras
    §2. Compact Lie Groups and Complex H.eductive Groups
    2.1. Some Properties of Linear Representations of Compact Lie Groups
    2.2. Self-adjointness of Reductive Algebraic Groups
    2.3. Algebraicity of a Compact Lie Group
    2.4. Some Properties of Extensions of Compact Lie Groups
    2.5. Correspondence Between Real Compact and Complex Reductive Lie Groups
    2.6. Maximal Tori in Compact Lie Groups
    §3. Cartan Decomposition
    3.1. Cartan Decomposition of a Semisimple Lie Algebra
    3.2. Cartan Decomposition of a Semisimple Lie Group
    3.3. Conjugacy of Maximal Compact Subgroups of Semisimple Lie Groups
    3.4. Topological Structure of Lie Groups
    3.5. Classification of Connected Semisimple Lie Groups
    3.6. Linearizer of a Semisimple Lie Group
    §4. Real Root Decomposition
    4.1. Maximal EX-Diagonalizable Subalgebras
    4.2. Real Root Systems
    4.3. Satake Diagrams
    4.4. Split Real Semisimple Lie Algebras
    4.5. Iwasawa Decomposition
    4.6. Maximal Connected Triangular Subgroups
    4.7. Cartan Subalgebras of a Real Semisimple Lie Algebra
    §5. Exponential Mapping for Semisimple Lie Groups
    5.1. Image of the Exponential Mapping
    5.2. Index of an Element of a Lie Group
    5.3. Indices of Simple Lie Groups
    Chapter 5 Models of Exceptional Lie Algebras
    §1. Models Associated with t. he Cayley Algebra
    1.1. Cayley Algebra
    1.2. The Algebra Gq
    1.3. Exceptional Jordan Algebra
    1.4. The Algebra F4
    1.5. The Algebra E6
    1.6. The Algebra E7
    1.7. Unified Construction of Exceptional Lie Algebras
    §2. Models Associated with Gradings
    Chapter 6 Subgroups and Subalgebras of Semisimple Lie Groups and Lie Algebras
    §1. Regular Subalgebras and Subgroups
    1.1. Regular Subalgebras of Complex Semisimple Lie Algebras
    1.2. Description of Semisimple and Reductive Regular Subalgebras
    1.3. Parabolic Subalgebras and Subgroups
    1.4. Examples of Parabolic Subgroups and Flag Manifolds
    1.5. Parabolic Subalgebras of Real Semisimple Lie Algebras
    1.6. Nonsemisimple Maximal Subalgebras
    §2. Three-dimensional Simple Subalgebras and Nilpotent Elements
    2.1. sl2-triples
    2.2. Three-dimensional Simple Subalgebras of Classical Simple Lie Algebras
    2.3. Principal and Semiprincipal Three-dimensional Simple Subalgebras
    2.4. Minimal Ambient Regular Subalgebras
    2.5. Minimal Ambient Complete Regular Subalgebras
    §3. Semisimple Subalgebras and Subgroups
    3.1. Semisimple Subgroups of Complex Classical Groups
    3.2. Maximal Connected Subgroups of Complex Classical Groups
    3.3. Semisimple Subalgebras of Exceptional Complex Lie Algebras
    3.4. Semisimple Subalgebras of Real Semisimple Lie Algebras
    Chapter 7 On the Classification of Arbitrary Lie Groups and Lie Algebras of a Given Dimension
    §1. Classification of Lie Groups and Lie Algebras of Small Dimension
    1.1. Lie Algebras of Small Dimension
    1.2. Connected Lie Groups of Dimension
    §2. The Space of Lie Algebras. Deformations and Contractioils
    2.1. The Space of Lie Algebras
    2.2. Orbits of the Action of the Group GLn(k)on Ln(k)
    2.3. Deformations of Lie Algebras
    2.4. Rigid Lie Algebras
    2.5. Contractions of Lie Algebras
    2.6. Spaces Ln(k) for Small n
    Tables
    References
    Author Index
    Subject Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证