0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 代数/数论 > 代数复杂性理论

相同语种的商品

浏览历史

代数复杂性理论


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
代数复杂性理论
  • 书号:9787030182999
    作者:(瑞士)比尔吉斯尔(Bürgisser, P.)等著
  • 外文书名:Algebraic Complexity Theory
  • 装帧:圆脊精装
    开本:B5
  • 页数:648
    字数:760
    语种:英文
  • 出版社:科学出版社
    出版时间:2016-04-13
  • 所属分类:O15 代数、数论、组合理论
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • apter 1. Introduction
    1.1 Exercises
    1.2 Open Problems
    1.3 Notes
    Part I. Fundamental Algorithms
    Chapter 2. Efficient Polynomial Arithmetic
    2.1 Multiplication of Polynomials I
    2.2* Multiplication of Polynomials II
    2.3* Multiplication of Several Polynomials
    2.4 Multiplication and Inversion of Power Series
    2.5* Composition of Power Series
    2.6 Exercises
    2.7 Open Problems
    2.8 Notes
    Chapter 3. Efficient Algorithms with Branching
    3.1 Polynomial Greatest Common Divisors
    3.2* Local Analysis of the Knuth-Scho(..)nhage Algorithm
    3.3 Evaluation and Interpolation
    3.4* Fast Point Location in Arrangements of Hyperplanes
    3.5* Vapnik-Chervonenkis Dimension and Epsilon-Nets
    3.6 Exercises
    3.7 Open Problems
    3.8 Notes
    Part If. Elementary Lower Bounds
    Chapter 4. Models of Computation
    4.1 Straight-Line Programs and Complexity
    4.2 Computation Sequences
    4.3" Autarky
    4.4" Computation Trees
    4.5* Computation Trees and Straight-line Programs
    4.6 Exercises
    4.7 Notes
    Chapter 5. Preconditioning and Transcendence Degree
    5.1 Preconditioning
    5.2 Transcendence Degree
    5.3* Extension to Linearly Disjoint Fields
    5.4 Exercises
    5.5 Open Problems
    5.6 Notes
    Chapter 6. The Substitution Method
    6.1 Discussion of Ideas
    6.2 Lower Bounds by the Degree of Linearization
    6.3" Continued Fractions, Quotients, and Composition
    6.4 Exercises
    6.5 Open Problems
    6.6 Notes
    Chapter 7. Differential Methods
    7.1 Complexity of Truncated Taylor Series
    7.2 Complexity of Partial Derivatives
    7.3 Exercises
    7.4 Open Problems
    7.5 Notes
    Part III. High Degree
    Chapter 8. The Degree Bound
    8.1 A Field Theoretic Version of the Degree Bound
    8.2 Geometric Degree and a Bezout Inequality
    8.3 The Degree Bound
    8.4 Applications
    8.5* Estimates for the Degree
    8.6* The Case of a Finite Field
    8.7 Exercises
    8.8 Open Problems
    8.9 Notes
    Chapter 9. Specific Polynomials which Are Hard to Compute
    9.1 A Genetic Computation
    9.2 Polynomials with Algebraic Coefficients
    9.3 Applications
    9.4* Polynomials with Rapidly Growing Integer Coefficients
    9.5* Extension to other Complexity Measures
    9.6 Exercises
    9.7 Open Problems
    9.8 Notes
    Chapter 10. Branching and Degree
    10.1 Computation Trees and the Degree Bound
    10.2 Complexity of the Euclidean Representation
    10.3" Degree Pattern of the Euclidean Representation
    10.4 Exercises
    10.5 Open Problems
    10.6 Notes
    Chapter 11. Branching and Connectivity
    11.1" Estimation of the Number of Connected Components
    11.2 Lower Bounds by the Number of Connected Components
    11.3 Knapsack and Applications to Computational Geometry
    11.4 Exercises
    11.5 Open Problems
    11.6 Notes
    Chapter 12. Additive Complexity
    12.1 Introduction
    12.2" Real Roots of Sparse Systems of Equations
    12.3 A Bound on the Additive Complexity
    12.4 Exercises
    12.5 Open Problems
    12.6 Notes
    Part IV. Low Degree
    Chapter 13. Linear Complexity
    13.1 The Linear Computational Model
    13.2 First Upper and Lower Bounds
    13.3" A Graph Theoretical Approach
    13.4* Lower Bounds via Graph Theoretical Methods
    13.5" Generalized Fourier Transforms
    13.6 Exercises
    13.7 Open Problems
    13.8 Notes
    Chapter 14. Multiplicative and Bilinear Complexity
    14.1 Multiplicative Complexity of Quadratic Maps
    14.2 The Tensorial Notation
    14.3 Restriction and Conciseness
    14.4 Other Characterizations of Rank
    14.5 Rank of the Polynomial Multiplication
    14.6" The Semiring T
    14.7 Exercises
    14.8 Open Problems
    14.9 Notes
    Chapter 15. Asymptotic Complexity of Matrix Multiplication
    15.1 The Exponent of Matrix Multiplication
    15.2 First Estimates of the Exponent
    15.3 Scalar Restriction and Extension
    15.4 Degeneration and Border Rank
    15.5 The Asymptotic Sum Inequality
    15.6 First Steps Towards the Laser Method
    15.7" Tight Sets
    15.8 The Laser Method
    15.9* Partial Matrix Multiplication
    15.10" Rapid Multiplication of Rectangular Matrices
    15.11 Exercises
    15.12 Open Problems
    15.13 Notes
    Chapter 16. Problems Related to Matrix Multiplication
    16.1 Exponent of Problems
    16.2 Triangular Inversion
    16.3 LUP-decomposition
    16.4 Matrix Inversion and Determinant
    16.5" Transformation to Echelon Form
    16.6" The Characteristic Polynomial
    16.7" Computing a Basis for the Kernel
    16.8" Orthogonal Basis Transform
    16.9" Matrix Multiplication and Graph Theory
    16.10 Exercises
    16.11 Open Problems
    16.12 Notes
    Chapter 17. Lower Bounds for the Complexity of Algebras
    17.1 First Steps Towards Lower Bounds
    17.2 Multiplicative Complexity of Associative Algebras
    17.3" Multiplicative Complexity of Division Algebras
    17.4" Commutative Algebras of Minimal Rank
    17.5 Exercises
    17.6 Open Problems
    17.7 Notes
    Chapter 18. Rank over Finite Fields and Codes
    18.1 Linear Block Codes
    18.2 Linear Codes and Rank
    18.3 Polynomial Multiplication over Finite Fields
    18.4* Matrix Multiplication over Finite Fields
    18.5* Rank of Finite Fields
    18.6 Exercises
    18.7 Open Problems
    18.8 Notes
    Chapter 19. Rank of 2-Slice and 3-Slice Tensors
    19.1 The Weierstraβ-Kronecker Theory
    19.2 Rank of 2-Slice Tensors
    19.3" Rank of 3-Slice Tensors
    19.4 Exercises
    19.5 Notes
    Chapter 20. Typical Tensorial Rank
    20.1 Geometric Description
    20.2 Upper Bounds on the Typical Rank
    20.3* Dimension of Configurations in Formats
    20.4 Exercises
    20.5 Open Problems
    20.6* Appendix:Topological Degeneration
    20.7 Notes
    Part V. Complete Problems
    Chapter 21. P Versus NP:A Nonuniform Algebraic Analogue
    21.1 Cook's Versus Valiant's Hypothesis
    21.2 p-Definability and Expression Size
    21.3 Universality of the Determinant
    21.4 Completeness of the Permanent
    21.5" The Extended Valiant Hypothesis
    21.6 Exercises
    21.7 Open Problems
    21.8 Notes
    Bibliography
    List of Notation
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证