0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 概率论/数理统计 > 函数型数据分析 (第二版)

相同语种的商品

浏览历史

函数型数据分析   (第二版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
函数型数据分析 (第二版)
  • 书号:9787030166937
    作者:(加)拉姆齐(J.().Ramsay)等
  • 外文书名:Functional Data Analysis
  • 装帧:圆脊精装
    开本:B5
  • 页数:426
    字数:522000
    语种:en
  • 出版社:科学出版社
    出版时间:2006-01-01
  • 所属分类:O21 概率论与数理统计
  • 定价: ¥178.00元
    售价: ¥140.62元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface to the Second Edition iii
    1 Introduction 1
    1.1 What are functional data? 1
    1.2 Functional models for nonfunctional data 5
    1.3 Some functional data analyses 5
    1.4 The goals of functional data analysis 9
    1.5 The first steps in a functional data analysis 11
    1.5.1 Data representation: smoothing and interpolation 11
    1.5.2 Data regist ration or feature alignment 12
    1.5.3 Data display 13
    1.5.4 Plotting pairs of derivatives 13
    1.6 Exploring variability in functional data 15
    1.6.1 Functional descriptive statistics 15
    1.6.2 Functional principal components analysis 15
    1.6.3 Functional canonical correlation 16
    1.7 Funct ional linear models 16
    1.8 Using derivatives in functional data analysis 17
    1.9 Concluding remarks 18
    2 Tools for exploring functional data 19
    2.1 Introduction 19
    2.2 Some notation 20
    2.2.1 Scalars, vectors, functions and matrices 20
    2.2.2 Derivatives and integrals 20
    2.2.3 Inncr products 21
    2.2 4 Functions of functions 21
    2.3 Summary statistics for functional data 22
    2.3 1 Functional means and variances 22
    2.3.2 Covariance and correlation functions 22
    2.3.3 Cross-covariance and cross-correlation functions.24
    2.4 The anatomy of a function 26
    2.4 1 Functional features 26
    2.4 2 Data resolution and functional dimensionality 27
    2.4.3 The size of a function 28
    2.5 Phase-plane plots of periodic effects 29
    2.5.1 The log nondurable goods index 29
    2.5.2 Phase-plane plots show energy transfer 30
    2.5.3 The nondurable goods cycles 33
    2.6 Further reading and notes 34
    3 From functional data to smooth functions 37
    3.1 Introduction 37
    3.2 Some properties of functional data 38
    3.2.1 What makes discrete data functional? 38
    3.2.2 Samples of functional data 39
    3.2.3 The interplay between smooth and noisy variation 39
    3.2.4 The standard model for error and its limitations 40
    3.2.5 The resolving power of data 41
    3.2.6 Data resolution and derivative estimation 41
    3.3 Representing functions by basis functions 43
    3.4 The Fourier basis system for periodic data 45
    3.5 The spline basis system for open-ended data 46
    3.5.1 Spline functions and degrees of freedom 47
    3.5 2 The B-spline basis for spline functions 49
    3.6 Other useful basis systems 53
    3.6.1 Wavelets 53
    3.6.2 Exponential and power bases 54
    3.6.3 Polynomial bases 54
    3.6 4 The polygonal basis 55
    3.6.5 The step-function basis 55
    3.6.6 The constant basis 55
    3.6.7 Empirical and designer bases 56
    3.7 Choosing a scale for t 56
    3.8 Further reading and notes 57
    4 Smoothing functional data by least squares 59
    4.1 Introduction 59
    4.2 Fitting data using a basis system by least squares 59
    4.2.1 Ordinary or unweighted least squares fits 60
    4.2.2 Weighted least squares fits 61
    4.3 A performance assessment of least squares smoothing 62
    4.4 Least squares fits as linear transformations of the data.63
    4.4.1 How linear smoothers work 64
    4.4.2 The degrees of freedom of a linear smooth 66
    4.5 Choosing the number K of basis functions 67
    4.5.1 The bias/ variance trade-off 67
    4.5.2 Algorithms for choosing K 69
    4.6 Computing sampling variances and confidence limits 70
    4.6.1 Sampling variance estimates 70
    4.6.2 Estimating Ee 71
    4.6.3 Confidence limits 72
    4.7 Fitting data by localized least squares 73
    4.7.1 Kernel smoothing 74
    4.7.2 Localized basis function estimators 76
    4.7.3 Local polynomial smoothing 77
    4.7.4 Choosing the bandwidth h 78
    4.7.5 Summary of localized basis methods 78
    4.8 Further reading and notes 79
    5 Smoothing functional data with a roughness penalty 81
    5.1 Introduction 81
    5.2 Spline smoothing 82
    5.2.1 Two competing objectives in function estimation 83
    5.2.2 Quantifying roughness 84
    5.2.3 The penalized sum of squared errors fitting criterion 84
    5.2.4 The structure of a smoothing spline 85
    5.2.5 How spline smooths are computed 86
    5.2.6 Spline smoothing as a linear operation 87
    5.2.7 Spline smoothing as an augmented least squares problem 89
    5.2.8 Estimating derivatives by spline smoothing 90
    5.3 Some extensions 91
    5.3.1 Roughness penalties with fewer basis functions 91
    5.3.2 More general measures of data fit 92
    5.3.3 More general roughness penalties 92
    5.3.4 Computing the roughness penalty matrix 93
    5.4 Choosing the smoothing parameter 94
    5.4.1 Some limits imposed by computational issues 94
    5.4.2 The cross-validation or CV method 96
    5.4.3 The generalized cross-validation or GCV method 97
    5.4.4 Spline smoothing the simulated growth data 99
    5.5 Confidence intervals for function values and functional probes 100
    5.5.1 Linear functional probes 101
    5.5.2 Two linear mappings defining a probe value 102
    5.5.3 Computing confidence limits for function values 103
    5.5.4 Confidence limits for growth acceleration 104
    5.6 A bi-resolution analysis with smoothing splines 104
    5.6.1 Complementary bases 105
    5.6.2 Specifying the roughness penalty 106
    5.6.3 Some properties of the estimates 107
    5.6.4 Relationship to the roughness penalty approach 108
    5.7 Further reading and notes 109
    6 Constrained functions 111
    6.1 Introduction 111
    6.2 Fitting positive functions 111
    6.2.1 A positive smoothing spline 113
    6.2.2 Representing a posit ive function by a differential equation 114
    6.3 Fitting strictly monotone functions 115
    6.3.1 Fitting the growth of a baby's tibia 115
    6.3.2 Expressing a strictly monotone function explicitly 115
    6.3.3 Expressing a strictly monotone function as a differential equation 116
    6.4 The performance of spline smoothing revisited 117
    6.5 Fitting probability functions 118
    6.6 Estimating probability density functions 119
    6.7 Functional data analysis of point processes 121
    6.8 Fitting a linear model with estimation of the density of residuals 123
    6.9 Further notes and readings 126
    7 The registration and display of functional data 127
    7.1 Int roduction 127
    7.2 Shift registration 129
    7.2.1 The least squares criterion for shift alignment 131
    7.3 Feature or landmark rcgistration 132
    7.4 Using thc warping function h to rcgister x 137
    7.5 A morc gcneral warping function h 137
    7.6 A continuous fitting criterion for registration 138
    7.7 Regist ering the height acceleration curves 140
    7.8 Some practical advice 142
    7.9 Computational details 142
    7.9.1 Shift registration by the Newton-Raphson algorithm 142
    7.10 Further reading and notes 144
    8 Principal components analysis for functional data 147
    8.1 Introduction 147
    8.2 Defining functional PCA 148
    8.2.1 PCA for multivariate data 148
    8.2.2 Defining PCA for functional data 149
    8.2.3 Defining an optimal empirical orthonormal basis 151
    8.2.4 PCA and eigenanalysis 152
    8.3 Visualizing the results 154
    8.3.1 Plotting components as perturbations of the mean 154
    8.3.2 Plotting principal component scores 156
    8.3.3 Rotating principal components 156
    8.4 Computational methods for functional PCA 160
    8.4.1 Discretizing the functions 161
    8.4.2 Basis function expansion of the functions 161
    8.4.3 More general numerical quadrature 164
    8.5 Bivariate and mult ivariate PCA 166
    8.5.1 Defining multivariate functional PCA 167
    8.5.2 Visualizing the results 168
    8.5.3 Inner product notation: Conc1uding remarks 170
    8.6 Further readings and notes 171
    9 Regularized principal components analysis 173
    9.1 Introduction 173
    9.2 The results of smoothing the PCA 175
    9.3 The smoothing approach 177
    9.3.1 Estimating the leading principal component 177
    9.3.2 Estimating subsequent principal components 177
    9.3.3 Choosing the smoothing parameter by CV 178
    9.4 Finding the regularized PCA in practice 179
    9.4.1 The periodic case 179
    9.4.2 The nonperiodic case 181
    9.5 Alternative approaches 182
    9.5.1 Smoothing the data rather than the PCA 182
    9.5.2 A stepwise roughness penalty procedure 184
    9.5.3 A further approach 185
    10 Principal components analysis of mixed data 187
    10.1 Int roduction 187
    10.2 General approaches to mixed data 189
    10.3 The PCA of hybrid data 190
    10.3.1 Combining function and vector spaces 190
    10.3.2 Finding the principal components in practice 191
    10.3.3 Incorporating smoot hing 192
    10.3.4 Balance between functional and vector variation 192
    10.4 Combining registration and PCA 194
    10.4.1 Expressing the observations as mixed data 194
    10.4.2 Balancing temperature and time shift effects 194
    10.5 The temperature data reconsidered 195
    10.5.1 Taking account of effects beyond phase shift 195
    10.5.2 Separating out the vector component 198
    11 Canonical correlation and discriminant analysis 201
    11.1 Introduction 201
    11.1.1 The basic problem 201
    11.2 Principles of classical CCA 204
    11.3 Functional canonical correlation analysis 204
    11.3.1 Notation and assumptions 204
    11.3.2 The naive approach does not give meaningful results 205
    11.3.3 Choice of the smoothing parameter 206
    11.3.4 The values of the correlations 207
    11.4 Application to the study of lupus nephritis 208
    11.5 Why is regularization necessary? 209
    11.6 Algorithmic considerations 210
    11.6.1 Discretization and basis approaches 210
    11.6.2 The roughness of the canonical variates 211
    11.7 Penalized optimal scoring and discriminant analysis 213
    11.7.1 The optimal scoring problem 213
    11.7.2 The discriminant problem 214
    11.7.3 The relationship with CCA 214
    11.7.4 Applications 215
    11.8 Further readings and notes 215
    12 Functionallinear models 217
    12.1 lntroduction 217
    12.2 A functional response and a categorical independent variable 218
    12.3 A scalar response and a functional independent variable 219
    12.4 A functional response and a functional independent variable 220
    12.4.1 Concurrent 220
    12.4.2 Annual or total 220
    12.4.3 Short-term fccd-forward 220
    12.4.4 Local influence 221
    12.5 What about predicting derivatives? 221
    12.6 Overview 222
    13 Modelling functional responses with multivariate covariates 223
    13.1 Introduction 223
    13.2 Predicting temperature curves from climate zones 223
    13.2.1 Fitting the model 225
    13.2.2 Assessing the fit 225
    13.3 Force plate data for walking horses 229
    13.3.1 Structure of the data 229
    13.3.2 A functional linear model for the horse data 231
    13.3.3 Effects and contrasts 233
    13.4 Computational issues 235
    13.4.1 The general model 235
    13.4.2 Pointwise minimization 236
    13.4.3 Functional linear modelling with regularized basis expansions 236
    13.4.4 Using the Kronecker product to express B 238
    13.4.5 Fitting the raw data 239
    13.5 Confidence intervals for regression functions 239
    13.5.1 How to compute confidence intervals 239
    13.5.2 Confidence intervals for climate zone effects 241
    13.5.3 Some cautions on interpreting confidence intervals 243
    13.6 Further reading and notes 244
    14 Functional responses, functional covariates and the concurrent model 247
    14.1 Introduction 247
    14.2 Predicting precipitation profiles from temperature curves 248
    14.2.1 The model for the daily logarithm of rainfall 248
    14.2.2 Preliminary steps 248
    14.2.3 Fitting the model and assessing fit 250
    14.3 Long-term and seasonal trends in the nondurable goods index 251
    14.4 Computational issues 255
    14.5 Confidence intervals 257
    14.6 Further reading and fiotes 258
    15 Functional linear models for scalar responses 261
    15.1 Introduction 261
    15.2 A naive approach: Discretizing the covariate function 262
    15.3 Regularization using restricted basis functions 264
    15.4 Regularization with roughness penalties 266
    15.5 Computational issues 268
    15.5.1 Computing the regularized solution 269
    15.5.2 Computing confidence limits 270
    15.6 Cross-validation and regression diagnostics 270
    15.7 The direct penalty method for computing 271
    15.7.1 Functional interpolation 272
    15.7.2 The two-stage minimization process 272
    15.7.3 Functional interpolation revisited 273
    15.8 Functional regression and integral equations 275
    15.9 Further reading and notes 276
    16 Functional linear models for functional responses 279
    16.1 Introduction: Predicting log precipitation from temperature 279
    16.1.1 Fitting the model without regularization 280
    16.2 Regularizing the fit by restricting the bases 282
    16.2.1 Restricting the basis n(8) 282
    16.2.2 Restricting the basis θ(t) 283
    16.2.3 Restricting both bases 284
    16.3 Assessing goodness of fit 285
    16.4 Computational details 290
    16.4 1 Fitting the model without regularization 291
    16 4 2 Fitting the model with regularization 292
    16.5 The general case 293
    16.6 Further reading and notes 295
    17 Derivatives and functional linear models 297
    17.1 Introduction 297
    17.2 The oil refinery data 298
    17.3 The melanoma data 301
    17.4 Some comparisons of the refinery a nd melanoma analyses 305
    18 Differential equations and operators 307
    18.1 Introduction 307
    18.2 Exploring a simple linear differential equation 308
    18.3 Beyond the constant coefficient first-order linear equation 310
    18.3.1 Nonconstant coefficients 310
    18 3.2 Higher order equations 311
    18.3.3 Systems of equations 312
    18 3.4 Beyond linearity 313
    18 4 Some applications of linear differential equations and operators 313
    18 4.1 Differential operators to produce new functional observations 313
    18 4.2 The gross domestic product data 314
    18.4.3 Differential operators to regularize or smooth models 316
    18.4.4 Differential operators to partition variation 317
    18 4.5 Operators to define solutions to problems 319
    18.5 Some linear differe ntial equation facts 319
    18.5.1 Derivatives are rougher 319
    18 5.2 Finding a linear differential operator that a nnihilates known functions 320
    18.5.3 Finding the functions j satisfying Lj=0 322
    18.6 Initial conditions, boundary conditions and other constraints 323
    18.6.1 Why additional constraints are needed to define a solution 323
    18.6.2 How L and B partition functions 324
    18.6.3 The inner product defined by operators L and B 325
    18.7 Further reading and notes 325
    19 Principal differential analysis 327
    19.1 Introduction 327
    19.2 Defining the problem 328
    19.3 A principal differential analysis of lip movement 329
    19.3.1 The biomechanics of lip movement 330
    19.3.2 Visualizing the PDA results 332
    19.4 PDA of the pinch force data 334
    19.5 Techniques for principal differential analysis 338
    19.5.1 PDA by point-wise minimization 338
    19.5.2 PDA using the concurrent functionallinear model 339
    19.5.3 PDA by iterating the concurrent linear model 340
    19.5.4 Assessing fit in PDA 343
    19.6 Comparing PDA and PCA 343
    19.6.1 PDA and PCA both minimize sums of squared errors 343
    19.6.2 PDA and PCA both involve finding linear operators 344
    19.6.3 Differences between differential operators (PDA) and projection operators (PCA) 345
    19.7 Further readings and notes 348
    20 Green's functions and reproducing kernels 349
    20.1 Introduction 349
    20.2 The Green's function for solving a linear differential equation 350
    20.2.1 The definition of the Green's function 351
    20.2.2 A matrix analogue of the Green's function 352
    20.2.3 A recipe for the Green's function 352
    20.3 Reproducing kernels and Green's functions 353
    20.3.1 What is a reproducing kernel? 354
    20.3.2 The reproducing kernel for ker B 355
    20.3.3 The reproducing kernel for ker L 356
    20.4 Further reading and notes 357
    21 More general roughness penalties 359
    21.1 Introduction 359
    21.1.1 The lip movement data 360
    21.1.2 The weather data 361
    21.2 The optimal basis for spline smoothing 363
    21.3 An O(n) algorithm for L-spline smoothing 364
    21.3.1 The need for a good algorithm 364
    21.3.2 Setting up the smoothing procedure 366
    21.3.3 The smoothing phase 367
    21.3.4 The performance assessment phase 367
    21.3.5 Other O(n) algorithms 369
    21.4 A compact support basis for L-splines 369
    21.5 Sorne case studies 370
    2l.5.1 The gross domestic product data 370
    21.5.2 The melanoma data 371
    21.5.3 The GDP data with seasonal effects 373
    21.5.4 Smoothing simulated human growth data 374
    22 Some perspectives on FDA 379
    22.1 The context of functional data analysis 379
    22.1.1 Replication and regularity 379
    22.l.2 Some functional aspects elsewhere in statistics 380
    22.1.3 Functional analytic treatments 381
    22.2 Challenges for the future 382
    22.2.1 Probability and inference 382
    22.2.2 Asymptotic results 383
    22.2.3 Multidimensional arguments 383
    22.2.4 Practical methodology and applications 384
    22.2.5 Back to the data! 384
    Appendix: Some algebraic and functional techniques 385
    A.1 Inner products (x ,y) 385
    A.1.1 Some specific examples 386
    A.1.2 General properties 387
    A.1.3 Descriptive statistics in inner product notation 389
    A.1.4 Some extended uses of inner product notation 390
    A.2 Further aspects of inner product spaces 391
    A.2.1 Projections 391
    A.2.2 Quadratic optimization 392
    A.3 Matrix decompositions and generalized inverses 392
    A.3.1 Singular value decompositions 392
    A.3.2 Generalized inverses 393
    A.3.3 The QR decomposition 393
    A.4 Projections 394
    A.4.1 Projection matrices 394
    A.4.2 Finding an appropriate projection matrix 395
    A.4.3 Projections in more general inner product spaces 395
    A.5 Constrained maximization of a quadratic function 396
    A.5.1 The finite-dimensional case 396
    A.5.2 The problem in a more general space 396
    A.5.3 Generalized eigenproblems 397
    A.6 Kronecker Products 398
    A.7 The multivariate linear model 399
    A.7.1 Linear models from a transformation perspective 399
    A.7.2 The least squares solution for B 400
    A.8 Regularizing the multivariate linear model 401
    A.8.1 Definition of regularization 401
    A.8.2 Hard-edged constraints 401
    A.8.3 Soft-edged constra ints 402
    References 405
    Index 419
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证