0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 光学 > 固体的光学性质

相同语种的商品

浏览历史

固体的光学性质


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
固体的光学性质
  • 书号:9787030236203
    作者:Mark Fox
  • 外文书名:Optical Properties of Solids
  • 装帧:平装
    开本:16开
  • 页数:324
    字数:385000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:O48 固体物理学
  • 定价: ¥59.00元
    售价: ¥46.61元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

  本书介绍了固体中光学性质的处理方法,介绍了多种材料(如晶体绝缘体、半导体,玻璃,金属以及分子材料)中光的吸收、反射、荧光和散射的基本原理,本书合理的应用了经典和量子的模型,并且用最近的实验数据解释了一些光学现象。本书最大的特点是包含了最近才发展起来的一些新的研究领域,之前的同类教材中都没有涉及这些领域。如半导体量子阱,有机半导体、电子振动固态激光以及非线性光学。
  本书主要面向物理学专业,也适用于电子工程、材料科学和物理化学专业,本书深入浅出,便于学习,附有例题、习题和章节总结。
  本书作者是谢菲尔德大学物理与天文系的Mark Fox。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1 Introdtiction
    1.1 Classification of optical processes
    1.2 Optical coefficients
    1.3 The complex refractive index and dielectric constant
    1.4 Optical materials
    1.4.1 Crvstalline insulators and semiconductors
    1.4.2 Glasses
    1.4.3 Metals
    1.4.4 Molecular materials
    1.4.5 Doded glasses and insulators
    1.5 Characteristic optical physics in the solid state
    1.5.1 Crvstal svmmetry
    1.5.2 Electronic bands
    1.5.3 Vibronic bands
    1.5.4 The density of states
    1.5.5 Delocalized states and collective excitations
    1.6 Microscopic models
    2 Classical propagation
    2.1 Propagation of light in a dense optical medium
    2.1.1 Atomic oscillators
    2.1.2 Vibrational oscillators
    2.1.3 Free electron oscillators
    2.2 The dipole oscillator model
    2.2.1 The Lorentz oscillator
    2.2.2 Multiple resonances
    2.2.3 Comparison with experimental data
    2.2.4 Local field corrections
    2.2.5 The Kramers-Kronig relationships
    2.3 Dispersion
    2.4 Optical anisotropy:birefringence
    3 Interband absorption
    3.1 Interband tranSitioils
    3.2 The transition rate for direct absorption
    3.3 Band edge absorotion in direct gap semiconductors
    3.3.1 The atomic physics of the interband transitions
    3.3.2 The band structure of a direct gap III-V semiconductor
    3.3.3 The joint density of states
    3.3.4 The frequency dependence of the band edge absorption
    3.3.5 The Franz-Keldysh effect
    3.3.6 Band edge absorption in a magnetic field
    3.4 Band edge absorption in indirect gap semiconductors
    3.5 Interband absorption above the band edge
    3.6 Measurement of absorlption spectra
    3.7 Semicondutor photodetectors
    3.7.1 Photodiodes
    3.7.2 Photoconductive devices
    3.7.3 Photovoltaic devices
    4 Excitons
    4.1 The coneept of excitons
    4.2 Free excitons
    4.2.1 Binding energy and radius
    4.2.2 Exciton absorption
    4.2.3 Experimental data for free eXcitons in GaAs
    4.3 Free excitons in external fields
    4.3.1 Electric fields
    4.3.2 Magnetic fields
    4.4 Free excitons at high densities
    4.5 Frenkel excitons
    4.5.1 Rare gas crystals
    4.5.2 Alkali halides
    4.5.3 Molecular crystals
    5 Lumineseenee
    5.1 Light emission in solids
    5.2 Interband luminescence
    5.2.1 Direct gap materials
    5.2.2 Indirect gap materials
    5.3 Photoluminescence
    5.3.1 Excitation and relaxation
    5.3.2 Low carrier densities
    5.3.3 Degeneracy
    5.3.4 Photoluminescence spectroscopy
    5.4 Electroluminescence
    5.4.1 General principles of electroluminescent devices
    5.4.2 Light emitting diodes
    5.4.3 Diode lasers
    6 Semiconductor qnailtum wells
    6.1 Quantum Confined structures
    6.2 Growth and structure of semiconductor quantum wells
    6.3 Electronic levels
    6.3.1 Separation of the variables
    6.3.2 Infinite potential wells
    6.3.3 Finite potential wells
    6.4 Optical absorption and excitons
    6.4.1 Selection rules
    6.4.2 Two-dimensional absorption
    6.4.3 Experimental data
    6.4.4 Excitons in quantum wells
    6.5 The quantum confined Stark effect
    6.6 Optical emission
    6.7 Intersubband transitions
    6.8 Bloch oscillators
    6.9 Quantum dots
    6.9.1 Semiconductor doped glasses
    6.9.2 Self-organized III-V quantum dots
    7 Free electrons
    7.1 Plasma reflectivity
    7.2 Free carrier conductivity
    7.3 Metals
    7.3.1 The Drude model
    7.3.2 Interband transitions in metals
    7.4 Doped semiconductors
    7.4.1 Free carrier reflectjvity and absorption
    7.4.2 Impurity absorption
    7.5 Plasmons
    8 Molecular materials
    8.1 Introduction to molecular materials
    8.2 Electronic states in conjugated molecules
    8.3 Optical spectra of molecules
    8.3.1 Electronic-vibrational transitions
    8.3.2 Molecular configuration diagrams
    8.3.3 The Franck-Condon principle
    8.3.4 Experimental spectra
    8.4 Aromatic hydrocarbons
    8.5 Conjugated polymers
    8.6 Organic optoelectronics
    9 Luminescence centres
    9.1 Vibronic absorption and emission
    9.2 Colour centres
    9.3 Paramagnetic impurities in ionic crystals
    9.3.1 The crystal field effect and vibronic coupling
    9.3.2 Rare earth ions
    9.3.3 Transition metal ions
    9.4 Solid state lasers and optical amplifiers
    9.5 Phosphors
    10 Phonons
    10.1 Infrared active phonons
    10.2 Infrared reflectivity and absorption in polar solids
    10.2.1 The classical oscillator model
    10.2.2 The Lyddane-Sachs-Teller relationship
    10.2.3 Restrahlen
    10.2.4 Lattice absorption
    10.3 Polaritons
    10.4 Polarons
    10.5 Inelastic light scattering
    10.5.1 General principles of inelastic light scattering
    10.5.2 Raman Scattering
    10.5.3 Brillouin scattering
    10.6 Phonon lifetimes
    11 Nonlinear optics
    11.1 The nonlinear susceptibility tensor
    11.2 The physical origin of optical nonlinearities
    11.2.1 Non-resonant nonlinearities
    11.2.2 Resonant nonlinearirities
    11.3 Second-order nonlinearities
    11.3.1 Nonlinear frequency mixing
    11.3.2 Crystal symmetry
    11.3.3 Phase matching
    11.4 Third-order nonlinear effects
    11.4.1 Overview of third-order phenomena
    11.4.2 Isotropic third-order nonlinear media
    11.4.3 Resonant nonlinearities in semiconductors
    A Electromagnetism in dielectrics
    A.1 Electromagnetic fields and Maxwell's equations
    A.2 Electromagnetic waves
    B Quantum theory of radiative absorption and emission
    B.1 Einstein coefficients
    B.2 Quantum transition rates
    B.3 Selection rules
    C Band theory
    C.1 Metals,semiconductors and insulators
    C.2 The nearly free electron model
    C.3 Example band structures
    D Semiconductor p-i-n diodes
    Solutions to exercises
    Bibliography
    Symbols
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证