1 Introdtiction 1.1 Classification of optical processes 1.2 Optical coefficients 1.3 The complex refractive index and dielectric constant 1.4 Optical materials 1.4.1 Crvstalline insulators and semiconductors 1.4.2 Glasses 1.4.3 Metals 1.4.4 Molecular materials 1.4.5 Doded glasses and insulators 1.5 Characteristic optical physics in the solid state 1.5.1 Crvstal svmmetry 1.5.2 Electronic bands 1.5.3 Vibronic bands 1.5.4 The density of states 1.5.5 Delocalized states and collective excitations 1.6 Microscopic models 2 Classical propagation 2.1 Propagation of light in a dense optical medium 2.1.1 Atomic oscillators 2.1.2 Vibrational oscillators 2.1.3 Free electron oscillators 2.2 The dipole oscillator model 2.2.1 The Lorentz oscillator 2.2.2 Multiple resonances 2.2.3 Comparison with experimental data 2.2.4 Local field corrections 2.2.5 The Kramers-Kronig relationships 2.3 Dispersion 2.4 Optical anisotropy:birefringence 3 Interband absorption 3.1 Interband tranSitioils 3.2 The transition rate for direct absorption 3.3 Band edge absorotion in direct gap semiconductors 3.3.1 The atomic physics of the interband transitions 3.3.2 The band structure of a direct gap III-V semiconductor 3.3.3 The joint density of states 3.3.4 The frequency dependence of the band edge absorption 3.3.5 The Franz-Keldysh effect 3.3.6 Band edge absorption in a magnetic field 3.4 Band edge absorption in indirect gap semiconductors 3.5 Interband absorption above the band edge 3.6 Measurement of absorlption spectra 3.7 Semicondutor photodetectors 3.7.1 Photodiodes 3.7.2 Photoconductive devices 3.7.3 Photovoltaic devices 4 Excitons 4.1 The coneept of excitons 4.2 Free excitons 4.2.1 Binding energy and radius 4.2.2 Exciton absorption 4.2.3 Experimental data for free eXcitons in GaAs 4.3 Free excitons in external fields 4.3.1 Electric fields 4.3.2 Magnetic fields 4.4 Free excitons at high densities 4.5 Frenkel excitons 4.5.1 Rare gas crystals 4.5.2 Alkali halides 4.5.3 Molecular crystals 5 Lumineseenee 5.1 Light emission in solids 5.2 Interband luminescence 5.2.1 Direct gap materials 5.2.2 Indirect gap materials 5.3 Photoluminescence 5.3.1 Excitation and relaxation 5.3.2 Low carrier densities 5.3.3 Degeneracy 5.3.4 Photoluminescence spectroscopy 5.4 Electroluminescence 5.4.1 General principles of electroluminescent devices 5.4.2 Light emitting diodes 5.4.3 Diode lasers 6 Semiconductor qnailtum wells 6.1 Quantum Confined structures 6.2 Growth and structure of semiconductor quantum wells 6.3 Electronic levels 6.3.1 Separation of the variables 6.3.2 Infinite potential wells 6.3.3 Finite potential wells 6.4 Optical absorption and excitons 6.4.1 Selection rules 6.4.2 Two-dimensional absorption 6.4.3 Experimental data 6.4.4 Excitons in quantum wells 6.5 The quantum confined Stark effect 6.6 Optical emission 6.7 Intersubband transitions 6.8 Bloch oscillators 6.9 Quantum dots 6.9.1 Semiconductor doped glasses 6.9.2 Self-organized III-V quantum dots 7 Free electrons 7.1 Plasma reflectivity 7.2 Free carrier conductivity 7.3 Metals 7.3.1 The Drude model 7.3.2 Interband transitions in metals 7.4 Doped semiconductors 7.4.1 Free carrier reflectjvity and absorption 7.4.2 Impurity absorption 7.5 Plasmons 8 Molecular materials 8.1 Introduction to molecular materials 8.2 Electronic states in conjugated molecules 8.3 Optical spectra of molecules 8.3.1 Electronic-vibrational transitions 8.3.2 Molecular configuration diagrams 8.3.3 The Franck-Condon principle 8.3.4 Experimental spectra 8.4 Aromatic hydrocarbons 8.5 Conjugated polymers 8.6 Organic optoelectronics 9 Luminescence centres 9.1 Vibronic absorption and emission 9.2 Colour centres 9.3 Paramagnetic impurities in ionic crystals 9.3.1 The crystal field effect and vibronic coupling 9.3.2 Rare earth ions 9.3.3 Transition metal ions 9.4 Solid state lasers and optical amplifiers 9.5 Phosphors 10 Phonons 10.1 Infrared active phonons 10.2 Infrared reflectivity and absorption in polar solids 10.2.1 The classical oscillator model 10.2.2 The Lyddane-Sachs-Teller relationship 10.2.3 Restrahlen 10.2.4 Lattice absorption 10.3 Polaritons 10.4 Polarons 10.5 Inelastic light scattering 10.5.1 General principles of inelastic light scattering 10.5.2 Raman Scattering 10.5.3 Brillouin scattering 10.6 Phonon lifetimes 11 Nonlinear optics 11.1 The nonlinear susceptibility tensor 11.2 The physical origin of optical nonlinearities 11.2.1 Non-resonant nonlinearities 11.2.2 Resonant nonlinearirities 11.3 Second-order nonlinearities 11.3.1 Nonlinear frequency mixing 11.3.2 Crystal symmetry 11.3.3 Phase matching 11.4 Third-order nonlinear effects 11.4.1 Overview of third-order phenomena 11.4.2 Isotropic third-order nonlinear media 11.4.3 Resonant nonlinearities in semiconductors A Electromagnetism in dielectrics A.1 Electromagnetic fields and Maxwell's equations A.2 Electromagnetic waves B Quantum theory of radiative absorption and emission B.1 Einstein coefficients B.2 Quantum transition rates B.3 Selection rules C Band theory C.1 Metals,semiconductors and insulators C.2 The nearly free electron model C.3 Example band structures D Semiconductor p-i-n diodes Solutions to exercises Bibliography Symbols Index