0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 凝聚态物理 > 固体能带理论和电子性质

相同语种的商品

浏览历史

固体能带理论和电子性质


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
固体能带理论和电子性质
  • 书号:9787030236227
    作者:J.Singleton
  • 外文书名:Band Theory and Electronic Properties of Solids
  • 装帧:平装
    开本:16开
  • 页数:244
    字数:280000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:O48 固体物理学
  • 定价: ¥46.00元
    售价: ¥36.34元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

  能带理论广泛存在,它是对量子力学最严格的检验之一。本书自成体系,以定量的、相对严格的方式揭示了能带理论是如何决定材料性质的。所有这些都需要借助于量子力学才能得以解释,本书介绍了科技中用到材料的电子、光学和结构性质的概念以及理解这些概念所需要的量子力学的知识,还描述了研究能带结构的一些实验技术。本书在一定深度上涉及了近些年来的研究热点,并展示了该研究领域持续的活力。
  本书适用于物理及工程专业的高年级本科生和低年级研究生。
  本书作者为牛津大学的Johnsingleton。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1 Metals: the Drude and Sommerfeld models
    1.1 Introduction
    1.2 What do we know about metals?
    1.3 The Drude model
    1.3.1 Assumptions
    1.3.2 The relaxation-time approximation
    1.4 The failure of the Drude model
    1.4.1 Electronic heat capacity
    1.4.2 Thermal conductivity and the Wiedemann-Franz ratio
    1.4.3 Hall effect
    1.4.4 Summary
    1.5 The Sommerfeld model
    1.5.1 The introduction of quantum mechanics
    1.5.2 The Fermi-Dirac distribution function
    1.5.3 The electronic density of states
    1.5.4 The electronic density Of states at E≈EF
    1.5.5 The electronic heat capacity
    1.6 Successes and failures of the Sommerfleld model
    2 The quantum mechanics of particles in a periodic potential: Bloch’s theorem
    2.1 Introduction and health warning
    2.2 Introducing the periodic potential
    2.3 Born-von Karman boundary conditions
    2.4 The Schrödinger equation in a periodic potential
    2.5 Bloch's theorem
    2.6 Electronic bandstructure
    3 The nearly-free electron model
    3.1 Introduction
    3.2 Vanishing potential
    3.2.1 Single electron energy state
    3.2.2 Several degenerate energy levels
    3.2.3 Two degenerate free-electron levels
    3.3 Consequences of the nearly-free-electron model
    3.3.1 The alkali metals
    3.3.2 Elements with even numbers of valence electrons
    3.3.3 More complex Fermi surface shapes
    4 The tight-binding model
    4.1 Introduction
    4.2 Band arising from a single electronic level
    4.2.1 Electronic wavefunctions
    4.2.2 Simple crystal structure.
    4.2.3 The potential and Hamiltonian
    4.3 General points about the formation of tight-binding bands
    4.3.1 The group ⅠA and ⅡA metals; the tight-binding model viewpoint
    4.3.2 The Group Ⅳ elements
    4.3.3 The transition metals
    5 Some general points about bandstructure
    5.1 Comparison of tight-binding and nearly-free-electron bandstructure
    5.2 The importance of k
    5.2.1 ħk is not the momentum
    5.2.2 Group velocity
    5.2.3 The effective mass
    5.2.4 The effective mass and the density of states
    5.2.5 Summary of the properties of k
    5.2.6 Scattering in the Bloch approach
    5.3 Holes
    5.4 Postscript
    6 Semiconductors and Insulators
    6.1 Introduction
    6.2 Bandstructure of Si and Ge
    6.2.1 General points
    6.2.2 Heavy and light holes
    6.2.3 Optical absorption
    6.2.4 Constant energy surfaces in the Conduction bands of Si and Ge
    6.3 Bandstructure of the direct-gap Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductors
    6.3.1 Introduction
    6.3.2 General points
    6.3.3 Optical absorption and excitons
    6.3.4 Excitons
    6.3.5 Constant energy surfaces in direct-gap Ⅲ-Ⅴ semiconductors
    6.4 Thermal population of bands in semiconductors
    6.4.1 The law of mass action
    6.4.2 The motion of the chemical potential
    6.4.3 Intrinsic carrier density
    6.4.4 Impurities and extrinsic carriers
    6.4.5 Extrinsic carrier density
    6.4.6 Degenerate semiconductors
    6.4.7 Impurity bands
    6.4.8 Is it a semiconductor or an insulator?
    6.4.9 A note on photoconductivity
    7 Bandstructure engineering
    7.1 Introduction
    7.2 Semiconductor alloys
    7.3 Artificial structures
    7.3.1 Growth of semiconductor multilayers
    7.3.2 Substrate and buffer layer
    7.3.3 Quantum wells
    7.3.4 Optical properties of quantum wells
    7.3.5 Use of quantum wells in opto-electronics
    7.3.6 Superlattices
    7.3.7 Type Ⅰand type Ⅱ superlattices
    7.3.8 Heterojunctions and modulation doping
    7.3.9 The envelope-function approximation
    7.4 Band engineering using organic molecules
    7.4.1 Introduction
    7.4.2 Molecular building blocks
    7.4.3 Typical Fermi surfaces
    7.4.4 A note on the effective dimensionality of Fermi-surfacesections
    7.5 Layered conducting oxides
    7.6 The Peierls transition
    8 Measurement of bandstructure
    8.1 Introduction
    8.2 Lorentz force and orbits
    8.2.1 General considerations
    8.2.2 The cyclotron frequency
    8.2.3 Orbits on a Fermi surface
    8.3 The introduction of quantum mechanics
    8.3.1 Landau levels
    8.3.2 Application of Bohr's correspondence principle to arbitrarily-shaped Fermi surfaces in a magnetic field
    8.3.3 Quantisation of the orbit area
    8.3.4 The electronic density of states in a magnetic field
    8.4 Quantum oscillatory phenomena
    8.4.1 Types of quantum oscillation
    8.4.2 The de Haas-van Alphen effect
    8.4.3 Other parameters which can be deduced from quantum oscillations
    8.4.4 Magnetic breakdown
    8.5 Cyclotron resonance
    8.5.1 Cyclotron resonance in metals
    8.5.2 Cyclotron resonance in semiconductors
    8.6 Interband magneto-optics in semiconductors
    8.7 Other techniques
    8.7.1 Angle-resolved photoelectron spectroscopy (ARPES)
    8.7.2 Electroreflectance spectroscopy
    8.8 Some case studies
    8.8.1 Copper
    8.8.2 Recent Controversy: Sr2RuO4
    8.8.3 Studies of the Fermi surface of an organic molecular metal
    8.9 Quasiparticles: interactions between electrons
    9 Transport of heat and electricity in metals and semiconductors
    9.1 A brief digression; life without scattering would be difficult!
    9.2 Thermal and electrical conductivity of metals
    9.2.1 Metals: the‘Kinetic theory’of electron transport
    9.2.2 What do τσ and τκ represent?
    9.2.3 Matthiessen’s rule
    9.2.4 Emission and absorption of phonons
    9.2.5 What is the characteristic energy of the phonons involved?
    9.2.6 Electron-phonon scattering at room temperature
    9.2.7 Electron-phonon scattering at T«θD
    9.2.8 Departures from the low temperature σ∝T-5 dependence
    9.2.9 Very low temperatures and/or very dirty metals
    9.2.10 Summary
    9.2.11 Electron-electron scattering
    9.3 Electrical Conductivity of semiconductors
    9.3.1 Temperature dependence of the carrier densities
    9.3.2 The temperature dependence of the mobility
    9.4 Disordered systems and hopping conduction
    9.4.1 Thermally-activated hopping
    9.4.2 Variable range hopping
    10 Magnetoresistance in three-dimensional systems
    10.1 Introduction
    10.2 Hall effect with more than one type of carrier
    10.2.1 General considerations
    10.2.2 Hall effect in the presence of electrons and holes
    10.2.3 A clue about the origins of magnetoresistance
    10.3 Magnetoresistance in metals
    10.3.1 The absence of magnetoresistance in the Sommerfeld model of metals
    10.3.2 The presence of magnetoresistance in real metals
    10.3.3 The use of magnetoresistance in finding the Fermi-surface shape
    10.4 The magnetophonon effect
    11 Magnetoresistance in two-dimensional systems and the quantum Hall effect
    11.1 Introduction: two-dimensional systems
    11.2 Two-dimensional Landau-level density of states
    11.2.1 Resistivity and conductivity tensors for a two-dimensional system
    11.3 Quantisation of the Hall resistivity
    11.3.1 Localised and extended states
    11.3.2 A further refinement-spin splitting
    11.4 Summary
    11.5 The fractional quantum Hall effect
    11.6 More than one subband populated
    12 Inhomogeneous and hot carrier distributions in semiconductors
    12.1 Introduction: inhomogeneous carrier distributions
    12.1.1 The excitation of minority carriers
    12.1.2 Recombination
    12.1.3 Diffusion and recombination
    12.2 Drift, diffusion and the Einstein equations
    12.2.1 Characterisation of minority carriers; the Shockley-Haynes experiment
    12.3 Hot carrier effects and ballistic transport
    12.3.1 Drift velocity saturation and the Gunn effect
    12.3.2 Avalanching
    12.3.3 A simple resonant tunnelling structure
    12.3.4 Ballistic transport and the quantum point contact
    A Useful terminology in condensed matter physics
    A.1 Introduction
    A.2 Crystal
    A.3 Lattice
    A.4 Basis
    A.5 Physical properties of crystals
    A.6 Unit cell
    A.7 Wigner-Seitz cell
    A.8 Designation of directions
    A.9 Designation of planes; Miller indices
    A.10 Conventional or primitive ?
    A.11 The 14 Bravais lattices
    B Derivation of density of states in k-space
    B.1 Introduction
    B.1.1 Density of states
    B.1.2 Reading
    C Derivation of distribution functions
    C.1 Introduction
    C.1.1 Bosons
    C.1.2 Fermions
    C.1.3 The Maxwell-Boltzmann distribution function
    C.1.4 Mean energy and heat capacity of the classical gas
    D Phonons
    D.1 Introduction
    D.2 A simple model
    D.2.1 Extension to three dimensions
    D.3 The Debye model
    D.3.1 Phonon number
    D.3.2 Summary; the Debye temperature as a useful energy scale in Solids
    D.3.3 A note on the effect of dimensionality
    E The Bohr model of hydrogen
    E.1 Introduction
    E.2 Hydrogenic impurities
    E.3 Excitons
    F Experimental considerations in measuring resistivity and Hall effect
    F.1 Introduction
    F.2 The four-wire method
    F.3 Sample geometries
    F.4 The van der Pauw method.
    F.5 Mobility spectrum analysis
    F.6 The resistivity of layered samples
    G Canonical momentum
    H Superconductivity
    H.1 Introduction
    H.2 Pairing
    H.3 Pairing and the Meissner effect
    I List of selected symbols
    J Solutions and additional hints for selected exercises
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证