1 Electromagnetism and basic optics 1.1 Introduction 1.2 The Maxwell eqiations 1.3 Linear isotropic media 1.4 Plane electromagnetic waves 1.5 Energy flow 1.6 Scalar wave amplitudes 1.7 Dispersive media 1.8 Electrical transmission lines 1.9 Elementary(ray)optics 1.9.1 The thin lens 1.9.2 Sign conventions 1.9.3 Refraction at a spherical surface 1.9.4 The thick lens 1.10 Rays and waves Problems 2 Fourier series and Fourier transforms 2.1 Introduction 2.2 Fourier series:spectrum of a periodic waveform 2.3 Fourier series:a mathematical reshape 2.4 The Fourier transform:spectrum of a non-periodic waveform 2.5 The analytic signal 2.6 The Dirac δ-function 2.7 Frequency and angular frequency 2.8 The power spectrum 2.9 Examples of Fourier transforms 2.9.1 A single rectangular pulse 2.9.2 The double pulse 2.9.3 A δ-function pulse 2.9.4 A regular array of δ-functions 2.9.5 A random array of δ-functions 2.9.6 An infinite sinewave 2.10 Convolution and the convolution theorem 2.11 Examples of convoltion 2.12 Sign choices with Fourier transforms problems 3 Diffraction 3.1 Introduction 3.2 Monochromatic spherical wave 3.3 The Kirchhoff diffraction integral 3.4 The Kirchhoff boundary conditions 3.5 Simplifying the Kirchhoff inregral 3.6 Complementary screens:the Babinet principle 3.7 The Fraunhofer condition I:provisional 3.8 Fraunhofer diffraction in'one dimension' 3.9 Fraunhofer diffraction in'two dimensions' 3.10 Two ways of looking at diffraction 3.11 Examples of Fraunhofer diffraction 3.12 Fraunhofer diffraction and Fourier transforms 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number 3.14 The Fraunhofer condition Ⅲ:object and image 3.15 The Fresnel case of diffraction 3.16 Fraunhofer diffraction and optical resolution 3.17 Surfaces whose fields are related by a Fourier transform 3.18 Kirchhoff boundary conditions:a harder look Problems 4 Diffraction gratings 4.1 Introduction 4.2 A basic transmission grating 4.3 The multiple-element pattern 4.4 Reflection grating 4.5 Blazing 4.6 Grating spectrometric instruments 4.7 Spectroscopic resolution 4.8 Making gratings 4.9 Tricks of the trade 4.9.1 Normal spectrum 4.9.2 Correct illumination 4.9.3 Shortening exposure times with a spectrograph 4.9.4 Vacuum instruments 4.9.5 Double monochromator 4.9.6 An inventor's paradise 4.10 Beyond the simple theory Problems 5 The Fabry-Perot 5.1 Introduction 5.2 Elementary theory 5.3 Basic apparatus 5.4 The meaning of finesse 5.5 Free spectral range and resolution 5.5.1 Free spectral range 5.5.2 Resolution 5.6 Analysis of an étalon fringe pattern 5.7 Flatness and parallelism of Fabry-Perot plates 5.8 Designing a Fabry-Perot to do a job 5.9 Practicalities of spectroscopy using a Fabry-Perot 5.10 The Fabry-Perot as a source of ideas Problems 6 Thin films 6.1 Introduction 6.2 Basic calculation for one layer 6.3 Matrix elimination of'middle'amplitudes 6.4 Reflected and transmitted Waves 6.5 Impedance concepts 6.6 High-reflectivity mirrors 6.7 Anti-reflection coatings 6.8 Interference filters 6.9 Practicalities of thin-film deposition Problems 7 Ray matrices and Gaussian beams 7.1 Introduction 7.2 Matrix methods in ray optics 7.3 Matrices for translation and refraction 7.4 Reflections 7.5 Spherical waves 7.6 Gaussian beams 7.7 Properties of a Gaussian beam 7.8 Sign conventions 7.9 Propagation of a Gaussian beam 7.10 Electric and magnetic fields Problems 8 Optical cavities 8.1 Introduction 8.2 Gauss-Hermite beams 8.3 Cavity resonator 8.4 Cavity modes 8.5 The condition for a low-loss mode 8.6 Finding the mode shape for a cavity 8.7 Longitudinal modes 8.8 High-loss cavities 8.9 The symmetrical confocal cavity 8.10 The confocal Fabry-Perot 8.11 Choice of cavity geometry for a laser 8.12 Selection of a desired transverse mode 8.13 Mode matching Problems 9 Coherence:qualitative 9.1 Introduction 9.2 Terminology 9.3 Young fringes:tolerance to frequency range 9.4 Young fringes:tolerance to collimation 9.5 Coherence area 9.6 The Michelson stellar interferometer 9.7 Aperture synthesis 9.8 Longitudinal and transverse coherence 9.9 Interference of two parallel plane waves 9.10 Fast and slow detectors 9.11 Coherence time and coherence length 9.12 A Michelson interferometer investigating longitudinal coherence 9.13 Fringe visibility 9.14 Orders of magnitude 9.15 Discussion 9.15.1 What of lasers? 9.15.2 The Young slits:another look 9.15.3 Fast and slow detectors:another look 9.15.4 Grating monochromator:another look 9.15.5 Polarized and unpolarized light Problems 10 Coherence:correlation functions 10.1 Introduction 10.2 Correlation function:definition 10.3 Autocorrelation and the Michelson interferometer 10.4 Normalized autocorrelation function 10.5 Fringe visibility 10.6 The Wiener-Khintchine theorem 10.7 Fourier transform spectroscopy 10.8 Partial coherence:transverse 10.9 The van Cittert-Zernike theorem 10.10 Intensity correlation 10.11 Chaotic light and laser light 10.12 The Hanbury Brown-Twiss experiment 10.13 Stellar diameters measured by intensity correlation 10.14 Classical and quantum optics Problems 11 Optical practicalities:étendue,interferometry,fringe localization 11.1 Introduction 11.2 Energy flow:étendue and radiance 11.3 Conservation of étendue and radiance 11.4 Longitudinal and transverse modes 11.5 Étendue and coherence area 11.6 Field modes and entropy 11.7 Radianee of some optical sources 11.7.1 Radiance of a black body 11.7.2 Radiance of a gas-discharge lamp 11.7.3 Radiance of a light-emitting diode (LED) 11.8 Étendue and interferometers 11.9 大Etendue and spectrometers 11.10 A design study:a Fourier-transform spectrometer 11.11 Fringe locahzation Problems 12 Image formation:diffraction theory 12.1 Introduction 12.2 Image formation with transversely Coherent illumination informal 12.3 Image formation:ideal optical system 12.4 Image formation:imperfect optical system 12.5 Microscope resolution:Abbe theory 12.5.1 Abbe theory:introduction 12.5.2 Abbe theory:explanation 12.6 Improving the basic microscope 12.7 Phase contrast 12.8 Dark-ground illumination 12.9 Schlieren 12.10 Apodizing 12.11 Holography 12.12 The point spread function 12.13 Optical transfer function;modulation transfer function Problems 13 Holography 13.1 Introduction 13.2 Special case:plane-wave obiect beam and plane-wave reference beam 13.3 The intensity of the reference beam 13.4 The response of a photographic emulsion 13.5 The theory of holography 13.6 Formatiol of an image 13.7 What if we break a hologram in half? 13.8 Replay with changed optical geometry 13.9 The effect of a thick photographic emulsion 13.10 Phase holograms 13.11 Gabor's holograms 13.12 Practicalities 13.13 Applications of holography Problems 14 Optical fibres 14.1 Introduction 14.2 Fibre optics:basics 14.3 Transverse modes 14.4 Dispersion 14.4.1 Material dispersion 14.4.2 Intermodal and intramodal dispersion 14.5 Multimode fibres 14.6 Single-mode fibres Problems 15 Polarization 15.1 Introduction 15.2 Anisotropic media 15.3 The mathematics of anisotropy 15.4 The understanding of tensorεij 15.5 The Faraday effect 15.6 Optical activity Problems 16 Two modern optical devices 16.1 Introduction 16.2 Compact disc:description of the disc 16.3 Compact disc:the encoding scheme 16.4 Optics of reading a compact disc 16.5 Feedback systems 16.5.1 Correction of tracking 16.5.2 Correction of focus 16.6 CD-ROM 16.7 DVD 16.8 The confocal microscope 16.9 Confocal microscope:resolution 16.10 The confocal microscope:depth of focus Problems Notes on selected problems Bibliography Index