0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > 偏微分方程数值解的有效条件数

相同作者的商品

浏览历史

偏微分方程数值解的有效条件数


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
偏微分方程数值解的有效条件数
  • 电子书不支持下载,仅供在线阅读
  • 书号:9787030367532
    作者:李子才,黄宏财,魏益民,程宏达
  • 外文书名:Effective condition number for numerical partial differential equations
  • 装帧:
    开本:B5
  • 页数:272
    字数:350
    语种:
  • 出版社:科学出版社
    出版时间:2015/5/25
  • 所属分类:
  • 定价: ¥128.00元
    售价: ¥76.80元
  • 图书介质:
    按需印刷 电子书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

  本书主要介绍偏微分方程数值解的有效条件数。首先介绍有效条件数的概念,与经典条件数概念的差异,接着将有效条件数运用于TREFFTZ方法;我们还讨论了有限差分和有限元方法的有效条件数,最后研究了截断奇异值分解和TIKHONOV正则化的有效条件数。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    Acknowledgments
    Chapter 1 Effective Condition Number
    1.1 Introduction
    1.2 Preliminary
    1.3 Symmetric Matrices
    1.3.1 Deffnitions of Effective condition numbers
    1.3.2 A posteriori computation
    1.4 Overdetermined Systems
    1.4.1 Basic algorithms
    1.4.2 Reffnements of (1.4.10)
    1.4.3 Criteria
    1.4.4 Advanced reffnements
    1.4.5 Effective condition number in p-norms
    1.5 Linear Algebraic Equations by GE or QR
    1.6 Application to Numerical PDE
    1.7 Application to Boundary Integral Equations
    1.8 Weighted Linear Least Squares Problems
    1.8.1 Effective condition number
    1.8.2 Perturbation bounds
    1.8.3 Applications and comparisons
    Chapter 2 Collocation Trefftz Methods
    2.1 Introduction
    2.2 CTM for Motz’s Problem
    2.3 Bounds of Effective Condition Number
    2.4 Stability for CTM of R_p=1
    2.5 Numerical Experiments
    2.5.1 Choice of R_p
    2.5.2 Extreme accuracy of D_0
    2.6 GCTM Using Piecewise Particular Solutions
    2.7 Stability Analysis of GCTM
    2.7.1 Trefftz methods
    2.7.2 Collocation Trefftz methods
    2.8 Method of Fundamental Solutions
    2.9 Collocation Methods Using RBF
    2.10 Comparisons Between Cond_eff and Cond
    2.10.1 CTM using particular solutions for Motz’s problem
    2.10.2 MFS and CM-RBF
    2.11 A Few Remarks
    Chapter 3 Simpliffed Hybrid Trefftz Methods
    3.1 The Simpliffed Hybrid TM
    3.1.1 Algorithms
    3.1.2 Error analysis
    3.1.3 Integration approximation
    3.2 Stability Analysis for Simpliffed Hybrid TM
    Chapter 4 Penalty Trefftz Method Coupled with FEM
    4.1 Introduction
    4.2 Combinations of TM and Adini0s Elements
    4.2.1 Algorithms
    4.2.2 Basic theorem
    4.2.3 Global superconvergence
    4.3 Bounds of Cond_eff for Motz’s Problem
    4.4 Effective Condition Number of One and Inffnity Norms
    4.5 Concluding Remarks
    Chapter 5 Trefftz Methods for Biharmonic Equations with Crack Singularities
    5.1 Introduction
    5.2 Collocation Trefftz Methods
    5.2.1 Three crack models
    5.2.2 Description of the method
    5.2.3 Error bounds
    5.3 Stability Analysis
    5.3.1 Upper bound for σ_max(F)
    5.3.2 Lower bound for σ_min(F)
    5.3.3 Upper bound for Cond_eff and Cond
    5.4 Proofs of Important Results Used in Section 5.3
    5.4.1 Basic theorem
    5.4.2 Proof of Lemma 5.4.3
    5.4.3 Proof of Lemma 5.4.4
    5.5 Numerical Experiments
    5.6 Concluding Remarks
    Chapter 6 Finite Difference Method
    6.1 Introduction
    6.2 Shortley-Weller Difference Approximation
    6.2.1 A Lemma
    6.2.2 Bounds for Cond EE
    6.2.3 Bounds for Cond_eff
    Chapter 7 Boundary Penalty Techniques of FDM
    7.1 Introduction
    7.2 Finite Difference Method
    7.2.1 Shortley-Weller Difference approximation
    7.2.2 Superconvergence of solution derivatives
    7.2.3 Bounds for Cond_eff
    7.3 Penalty-Integral Techniques
    7.4 Penalty-Collocation Techniques
    7.5 Relations Between Penalty-Integral and Penalty-Collocation Techniques
    7.6 Concluding Remarks
    Chapter 8 Boundary Singularly Problems by FDM
    8.1 Introduction
    8.2 Finite Difference Method
    8.3 Local Reffnements of Difference Grids
    8.3.1 Basic results
    8.3.2 Nonhomogeneous Dirichlet and Neumann boundary conditions
    8.3.3 A remark
    8.3.4 A view on assumptions A1-A4
    8.3.5 Discussions and comparisons
    8.4 Numerical Experiments
    8.5 Concluding Remarks
    Chapter 9 Finite Element Method Using Local Mesh Refinements
    9.1 Introduction
    9.2 Optimal Convergence Rates
    9.3 Homogeneous Boundary Conditions
    9.4 Nonhomogeneous Boundary Conditions
    9.5 Intrinsic View of Assumption A2 and Improvements of Theorem 9.4.1
    9.5.1 Intrinsic view of assumption A2
    9.5.2 Improvements of Theorem 9.4.1
    9.6 Numerical Experiments
    Chapter 10 Hermite FEM for Biharmonic Equations
    10.1 Introduction
    10.2 Description of Numerical Methods
    10.3 Stability Analysis
    10.3.1 Bounds of Cond
    10.3.2 Bounds of Cond_eff
    10.4 Numerical Experiments
    Chapter 11 Truncated SVD and Tikhonov Regularization
    11.1 Introduction
    11.2 Algorithms of Regularization
    11.3 New Estimates of Cond and Cond_eff
    11.4 Brief Error Analysis
    Appendix Deffnitions and Formulas
    A.1 Square Systems
    A.1.1 Symmetric and positive deffnite matrices
    A.1.2 Symmetric and nonsingular matrices
    A.1.3 Nonsingular matrices
    A.2 Overdetermined Systems
    A.3 Underdetermined Systems
    A.4 Method of Fundamental Solutions
    A.5 Regularization
    A.5.1 Truncated singular value decomposition
    A.5.2 Tikhonov regularization
    A.6 p-Norms
    A.7 Conclusions
    Epilogue
    Bibliography
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证