本书主要介绍Riemann曲面的基本理论,包括:Riemann曲面的概念、Weierstrass意义下的解析函数与Riemann曲面、覆盖曲面、微分形式与积分、单值化定理及其应用、微分形式空间、紧Riemann曲面和非紧Riemann曲面。
样章试读
目录
- 目录
第一章 Riemann曲面的概念 (1)
1 曲面的概念 (1)
2 Riemann曲面的定义 (2)
3 Riemann曲面的简单例子 (3)
4 带边界的Riemann曲面 (5)
第二章 Weiersyrass意义下的解析函数与Riemann曲面 (8)
1 完全解析函数 (8)
2 解析图象 (10)
3 代数函数 (13)
第三章 覆盖曲面 (24)
1 光滑覆盖曲面 (24)
2 弧的提升与正则覆盖曲面 (24)
3 曲线的同伦与基本群 (27)
4 单值性定理及其应用 (29)
5 单连通Riemann曲面解析开拓的连贯性定理 (30)
6 基本群的子群与覆盖曲面 (32)
7 覆盖变换群 (34)
第四章 微分形式与积分 (37)
1 微分形式 (37)
2 微分形式的积分 (41)
3 Stokes公式及其应用 (42)
4 调和微分与全纯微分 (44)
第五章 单值化定理及其应用 (49)
1 次调和函数与Dirichlet问题的Perron解法 (49)
2 Riemann曲面的可数性 (56)
3 开Riemann曲面的Green函数?调和测度与最大值原理 (60)
4 Riemann曲面的分类 (62)
5 Green函数的一些性质 (65)
6 抛物型Riemann曲面的一类具有奇点的调和函数 (67)
7 单值化定理及其证明 (72)
8 用万有覆盖曲面及万有覆盖变换群构造Riemann曲面 (77)
9 线分式变换的类型与不动点 (80)
10 单位圆内的线分式变换与非欧几何 (85)
11 Klein群与Riemann曲面 (89)
12 七种特殊类型的Riemann曲面 (93)
13 Fuchs群与双曲型Riemann曲面 (95)
第六章 微分形式空间 (102)
1 可测微分空间及其几个重要的子空间 (102)
2 逐段解析的简单闭曲线对应的微分 (104)
3 光滑算子的一个引理 (106)
4 Weyl引理与调和微分子空间 (111)
5 具有极点的调和微分和解析微分的存在性 (115)
第七章 紧Riemann曲面 (120)
1 紧Riemann曲面上的调和微分与解析微分空间 (120)
2 亚纯微分及其双线性关系式 (124)
3 除子与亚纯函数空间 (127)
4 Riemann-Roch定理 (130)
5 q次全纯微分空间 (134)
6 Weiersyrass间隙数与Weiersyrass点 (136)
第八章 非紧Riemann曲面 (145)
1 紧Riemann曲面上的初等微分与Cauchy积分公式 (145)
2 非紧Riemann曲面上的域的初等微分与Cauchy积分公式 (149)
3 Runge逼近定理 (149)
4 Mittag-Leffler定理与非紧Riemann曲面上亚纯函数的构造 (153)
5 Weiersyrass定理与非紧Riemann曲面的全纯函数的构造 (156)
参考文献 (159)