0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 力学 > 振动与波 > 高维非线性系统的隐藏吸引子(英文)

相同语种的商品

浏览历史

高维非线性系统的隐藏吸引子(英文)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
高维非线性系统的隐藏吸引子(英文)
  • 书号:9787030547224
    作者:Zhouchao Wei(魏周超),Wei Zhang(张伟),Minghui Yao(姚明辉)
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥89.00元
    售价: ¥70.31元
  • 图书介质:
    纸质书

  • 购买数量: 件  商品库存: 6
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Chapter 1 Basic geometrical point of view of dynamical systems 1
    1.1 Self-excited and hidden attractors 1
    1.2 Hidden oscillations in Hilbert's 16th problem and applied models 3
    1.3 The main contents of this book 6
    Reference 9
    Chapter 2 Hidden attractors without equilibria 12
    2.1 Hidden chaos without equilibria in three-dimensional autonomous system 12
    2.1.1 The proposed system 13
    2.1.2 Forming mechanism of the new chaotic attractors 17
    2.1.3 Conclusion 22
    2.2 Hidden hyperchaos without equilibria in four-dimensional autonomous system 23
    2.2.1 The hyperchaotic system from generalized di.usionless Lorenz equations 25
    2.2.2 Dynamical structure of the proposed hyperchaotic system 29
    2.3 Conclusion 35
    Reference 35
    Chapter 3 Hidden hyperchaotic attractors in a modi-ed Lorenz-Stenflo system 39
    3.1 Introduction 39
    3.2 The hyperchaotic system from Lorenz-Stenflo system 40
    3.2.1 Formulation of the system 40
    3.2.2 Hidden hyperchaotic attractors with only one stable equilibrium 42
    3.2.3 Non-equivalence with existing hyperchaotic systems 45
    3.3 Some basic properties and bifurcation analysis 45
    3.3.1 Symmetry and invariance and dissipativity 45
    3.3.2 Equilibria and stability 46
    3.3.3 Bifurcation analysis 48
    3.4 The ultimate bound and positively invariant set 52
    3.4.1 Four dimensional hyperelliptic estimate of the ultimate bound and positively invariant set 52
    3.4.2 Two dimensional cylindrical estimate of the ultimate bound and positively invariant set 55
    3.5 Conclusion 57
    Reference 60
    Chapter 4 Hidden attractors, multiple limit cycles and boundedness in the generalized 4D Rabinovich system 63
    4.1 Introduction 63
    4.2 The proposed system and hidden hyperchaos 65
    4.2.1 Formulation of the system 65
    4.2.2 Hidden hyperchaotic attractors with a unique stable equilibrium 66
    4.2.3 Initial conditions and coexisting attractors 69
    4.3 Generation of hidden attractors 70
    4.4 Local bifurcation in the generalized hyperchaotic Rabinovich system 71
    4.4.1 Equilibrium and stability 71
    4.4.2 Hopf bifurcation 72
    4.5 Boundedness of motion for the hyperchaotic system 76
    4.6 Conclusion 79
    Reference 80
    Chapter 5 On the periodic orbit bifurcating from one single non-hyperbolic equibrium 84
    5.1 Introduction 84
    5.2 The proposed system and chaotic attractors 85
    5.3 The averaging theory for periodic orbits 88
    5.4 Statements of the main results 89
    5.5 Conclusion 95
    Reference 95
    Chapter 6 Hidden attractors and dynamical behaviors in an extended Rikitake system 99
    6.1 Introduction 99
    6.2 Existence of equilibria 100
    6.3 Hidden attractors that arise from stable equilibria 102
    6.3.1 Coexistence of stable equilibria and hidden attractor 103
    6.3.2 Finding hidden attractors by a simple linear transformation 104
    6.4 Hopf bifurcation analysis 106
    6.5 Dynamics analysis at in-nity 110
    6.6 Conclusion 114
    Reference 115
    Chapter 7 Hidden chaotic regions and complex dynamics in 3D homopolar disc dynamo 118
    7.1 Introduction 118
    7.2 Description of the self-exciting homopolar disc dynamo and related problems 120
    7.3 Study of hidden attractors from a simple linear transformation 125
    7.4 Study of hidden attractors from Hopf bifurcation 127
    7.4.1 An outline of the Hopf bifurcation methods 127
    7.4.2 Hopf bifurcation analysis 129
    7.4.3 Hidden attractors and numerical simulations 131
    7.4.4 Unstable periodic orbits 131
    7.5 Existence of homoclinic orbits 134
    7.6 In-nity dynamics by Poincar.e compacti-cation 137
    7.7 Conclusion 143
    Reference 144
    Chapter 8 Hidden hyperchaos and circuit application in 5D homopolar disc dynamo 147
    8.1 Introduction 147
    8.2 5D hyperchaotic self-exciting homopolar disc dynamo 148
    8.3 Hidden attractors and multistability 152
    8.3.1 Hidden attractors with two stable equilibria 153
    8.3.2 Coexistence of point, periodic, quasi-periodic and hidden chaotic attractors 156
    8.4 Electronic circuit implementation of the 5D hyperchaotic system 161
    8.5 Conclusion 163
    Reference 164
    Chapter 9 Bifurcation and circuit realization for delayed system with hidden attractors 168
    9.1 Introduction 168
    9.2 Hopf bifurcation analysis with multiple delays 170
    9.2.1 Stability of equilibrium 171
    9.2.2 Existence of Hopf bifurcation with 72
    9.2.3 Existence of Hopf bifurcation with 75
    9.3 Direction, stability and numerical results of Hopf bifurcation with 77
    9.3.1 Direction of Hopf bifurcations and stability of the bifurcating periodic orbits 177
    9.3.2 Numerical simulations 186
    9.4 Circuit implementation of the multiple time-delay system 190
    9.5 Conclusion 192
    Reference 193
    Index 196
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证