0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 概率论/数理统计 > 均匀实验设计的理论和应用(英文版)

相同语种的商品

浏览历史

均匀实验设计的理论和应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
均匀实验设计的理论和应用(英文版)
  • 书号:9787030591104
    作者:Kai-Tai Fang(方开泰),Min-Qian Liu(刘民千),Hong Qin(覃红),Yong-Dao Zhou(周永道)
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:300
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥149.00元
    售价: ¥117.71元
  • 图书介质:
    纸质书

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 Experiments 1
    1.1.1 Examples 2
    1.1.2 Experimental Characteristics 5
    1.1.3 Typeof Experiments 7
    1.2 Basic TerminologiesUsed 9
    1.3 StatisticalModels 12
    1.3.1 Factorial DesignsandANOVA Models 13
    1.3.2 FractionalFactorialDesigns 16
    1.3.3 LinearRegressionModels 19
    1.3.4 NonparametricRegression Models 23
    1.3.5 RobustnessofRegressionModels 25
    1.4 Word-Length Pattern: Resolution and Minimum Aberration 26
    1.4.1 Ordering 26
    1.4.2 De.ning Relation 27
    1.4.3 Word-Length PatternandResolution 29
    1.4.4 Minimum Aberration Criterion and Its Extension 30
    1.5 Implementation of Uniform Designs for Multifactor Experiments 32
    1.6 Applicationsofthe UniformDesign 37
    Exercises 37
    References 40
    2 Uniformity Criteria 43
    2.1 OverallMeanModel 43
    2.2 StarDiscrepancy 46
    2.2.1 De.nition 46
    2.2.2 Properties 48
    2.3 Generalized L2-Discrepancy 52
    2.3.1 De.nition 53
    2.3.2 Centered L2-Discrepancy 54
    2.3.3 Wrap-around L2-Discrepancy 56
    2.3.4 Some Discussion onCDandWD 57
    2.3.5 Mixture Discrepancy 61
    2.4 Reproducing Kernelfor Discrepancies 64
    2.5 Discrepanciesfor FiniteNumbersof Levels 70
    2.5.1 DiscreteDiscrepancy 71
    2.5.2 Lee Discrepancy 73
    2.6 LowerBoundsof Discrepancies 74
    2.6.1 Lower Bounds of the Centered L2-Discrepancy 76
    2.6.2 Lower Bounds of the Wrap-around L2-Discrepancy 79
    2.6.3 LowerBoundsof Mixture Discrepancy 86
    2.6.4 Lower Bounds of Discrete Discrepancy 91
    2.6.5 LowerBoundsofLee Discrepancy 94
    Exercises 97
    References 99
    3 Construction of Uniform Designs—Deterministic Methods 101
    3.1 UniformDesignTables 102
    3.1.1 Backgroundof Uniform Design Tables 102
    3.1.2 One-Factor UniformDesigns 107
    3.2 UniformDesignswithMultiple Factors 109
    3.2.1 Complexityofthe Construction 109
    3.2.2 Remarks 110
    3.3 Good Lattice Point Method and Its Modi.cations 115
    3.3.1 GoodLatticePoint Method 115
    3.3.2 The Leave-One-Out glpm 117
    3.3.3 Good Lattice Point with Power Generator 121
    3.4 The CuttingMethod 122
    3.5 LinearLevelPermutationMethod 124
    3.6 CombinatorialConstructionMethods 129
    3.6.1 Connection Between Uniform Designs and Uniformly ResolvableDesigns 129
    3.6.2 Construction Approaches via Combinatorics 133
    3.6.3 Construction Approach via Saturated Orthogonal Arrays 145
    3.6.4 FurtherResults 147
    Exercises 149
    References 152
    4 Construction of Uniform Designs—Algorithmic Optimization Methods 155
    4.1 NumericalSearchforUniformDesigns 155
    4.2 Threshold-AcceptingMethod 158
    4.3 Construction Method Based on Quadratic Form 166
    4.3.1 Quadratic Formsof Discrepancies 167
    4.3.2 ComplementaryDesignTheory 168
    4.3.3 OptimalFrequencyVector 172
    4.3.4 Integer Programming Problem Method 177
    Exercises 179
    References 180
    5 Modeling Techniques 183
    5.1 BasisFunctions 184
    5.1.1 PolynomialRegressionModels 184
    5.1.2 SplineBasis 188
    5.1.3 WaveletsBasis 189
    5.1.4 RadialBasis Functions 190
    5.1.5 SelectionofVariables 191
    5.2 ModelingTechniques:KrigingModels 191
    5.2.1 Models 192
    5.2.2 Estimation 194
    5.2.3 Maximum Likelihood Estimation 195
    5.2.4 Parametric EmpiricalKriging 196
    5.2.5 Examplesand Discussion 197
    5.3 A Case Study on Environmental Data—Model Selection 200
    Exercises 205
    References 207
    6 Connections Between Uniformity and Other Design Criteria 209
    6.1 UniformityandIsomorphism 209
    6.2 UniformityandOrthogonality 214
    6.3 UniformityandConfounding 218
    6.4 UniformityandAberration 221
    6.5 Projection Uniformity and Related Criteria 228
    6.5.1 Projection Discrepancy Pattern and Related Criteria 228
    6.5.2 Uniformity Pattern and Related Criteria 231
    6.6 MajorizationFramework 232
    6.6.1 Based on Pairwise Coincidence Vector 232
    6.6.2 MinimumAberration Majorization 234
    Exercises 238
    References 239
    7 Applications of Uniformity in Other Design Types 243
    7.1 UniformityinBlockDesigns 243
    7.1.1 UniformityinBIBDs 243
    7.1.2 Uniformityin PRIBDs 244
    7.1.3 UniformityinPOTBs 245
    7.2 UniformityinSupersaturatedDesigns 247
    7.2.1 Uniformityin Two-LevelSSDs 248
    7.2.2 UniformityinMixed-LevelSSDs 249
    7.3 Uniformity in Sliced Latin Hypercube Designs 250
    7.3.1 ACombined UniformityMeasure 251
    7.3.2 OptimizationAlgorithms 252
    7.3.3 Determination of the Weight x 253
    7.4 Uniformity Under Errorsinthe Level Values 255
    Exercises 258
    References 260
    8 Uniform Design for Experiments with Mixtures 263
    8.1 IntroductiontoDesignwith Mixture 263
    8.1.1 Some Typesof Designs with Mixtures 265
    8.1.2 CriteriaforDesignswithMixtures 268
    8.2 Uniform Designs of Experiments with Mixtures 270
    8.2.1 Discrepancy for Designs with Mixtures 270
    8.2.2 Construction Methods for Uniform Mixture Design 273
    8.2.3 Uniform Design with Restricted Mixtures 276
    8.2.4 UniformDesignon Irregular region 280
    8.3 Modeling Technique for Designs with Mixtures 285
    Exercises 292
    References 295
    Subject Index 297
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证