目录 第1章 喀斯特适生植物的适生机制 1 1.1 喀斯特典型土壤环境 3 1.1.1 碳酸盐岩和石灰土 3 1.1.2 石灰土的形成及基本属性 4 1.1.3 石灰土的酸碱特征 5 1.1.4 石灰土的持水特征 5 1.1.5 石灰土的养分特征 7 1.1.6 钙镁元素在碳酸盐岩—石灰土—植物中的迁移特征 7 1.2 喀斯特适生植物的形态特征 9 1.2.1 叶片形态及解剖学特征 10 1.2.2 根、茎形态结构及株型 13 1.3 植物的喀斯特适生性生理生态机制 17 1.3.1 光合作用机制 18 1.3.2 无机营养机制 25 1.3.3 碳酸酐酶作用机制 28 1.3.4 生物多样性作用机制 36 1.3.5 钙调控作用及高钙适应机制 46 1.3.6 根系分泌有机酸作用机制 50 1.4 植物的喀斯特适生性与生态系统的稳定性 54 1.4.1 适生植物对生态系统中的水分的调节 54 1.4.2 适生植物对生态系统中的碳循环的调节 55 1.4.3 适生植物对生态系统中的营养循环的调节 56 1.4.4 适生植物对生态系统的稳定性的决定作用 58 1.5 植物的喀斯特适生性与喀斯特地区生态修复 59 1.5.1 适生植物的筛选配置与植被恢复 60 1.5.2 植物的喀斯特适生性与森林经营和管理 61 1.5.3 适生植物与喀斯特地区景观构建 62 1.5.4 喀斯特适生植物与喀斯特地区的生态经济 63 参考文献 65 第2章 植物的碳酸酐酶与喀斯特适生性 89 2.1 植物碳酸酐酶的测定方法 91 2.1.1 碳酸酐酶的测定方法 91 2.1.2 利用锑微电极测定植物碳酸酐酶活力的电化学方法 93 2.1.3 植物碳酸酐酶活力测定的技术规程 105 2.2 喀斯特逆境下植物碳酸酐酶的响应 107 2.2.1 碳酸酐酶对脱水的响应 108 2.2.2 碳酸酐酶对模拟岩溶干旱的响应 113 2.2.3 碳酸酐酶对重碳酸盐的响应 125 2.2.4 碳酸酐酶对低磷和低营养的响应 129 2.2.5 碳酸酐酶对盐分逆境的响应 131 2.3 碳酸酐酶活力与喀斯特适生植物的鉴定 133 2.3.1 鉴定原理 133 2.3.2 技术规程 134 2.3.3 应用实例 136 参考文献 137 第3章 植物碳酸氢根离子利用能力的检测 142 3.1 植物利用无机碳的途径 143 3.1.1 植物的二氧化碳同化过程 144 3.1.2 植物对碳酸氢根离子的利用 154 3.1.3 喀斯特逆境下植物的无机碳利用策略 155 3.2 二氧化碳稳定碳同位素组成日平均值的测定 157 3.2.1 原理 157 3.2.2 技术规程 159 3.2.3 应用实例 161 3.3 野外生境下植物的碳酸氢根离子利用能力的检测和评判 164 3.3.1 原理 165 3.3.2 技术规程 165 3.3.3 应用实例 167 3.4 控制实验下植物的碳酸氢根离子利用能力及总光合同化能力的检测和评判 168 3.4.1 原理 169 3.4.2 技术规程 172 3.4.3 应用实例 175 3.5 高效利用碳酸氢根离子植物的快速筛选 177 3.5.1 原理 178 3.5.2 技术规程 178 3.5.3 应用实例 180 参考文献 184 第4章 植物抗干旱能力的检测 189 4.1 喀斯特适生植物水分利用特征 191 4.1.1 植物的水分代谢过程 192 4.1.2 植物对代谢水的利用 197 4.1.3 喀斯特逆境下植物的水分利用策略 197 4.2 植物的需水量与抗干旱能力 198 4.2.1 植物需水量的确定 199 4.2.2 干旱逆境下的植物需水量 200 4.2.3 利用指示植物的需水信息确定新型作物需水量 201 4.3 叶片紧张度与植物的水分状况 208 4.3.1 叶片生理电容与叶片水势 209 4.3.2 叶片紧张度 216 4.3.3 叶片紧张度测定方法 216 4.3.4 利用叶片紧张度反映植物水分状况 222 4.4 利用电生理信息快速定量植物固有抗干旱能力的方法 227 4.4.1 原理 227 4.4.2 技术规程 227 4.4.3 应用实例 230 4.5 利用叶绿素荧光信息快速定量植物固有抗干旱能力的方法 234 4.5.1 原理 234 4.5.2 技术规程 235 4.5.3 应用实例 237 4.6 利用根系分泌的苹果酸特征评估植物抗干旱胁迫能力 239 4.6.1 原理 239 4.6.2 技术规程 241 4.6.3 应用实例 245 参考文献 246 第5章 植物耐低营养能力的检测 255 5.1 喀斯特适生植物的养分利用特征 256 5.1.1 植物对氮素的利用 256 5.1.2 植物对无机磷的利用 258 5.1.3 植物对微量元素的吸收利用 259 5.2 植物氮利用能力的检测 260 5.2.1 植物耐低铵能力的检测 261 5.2.2 植物利用硝酸盐能力的测定 265 5.3 植物耐低磷能力的测定 268 5.3.1 基于离子吸收动力学特征的植物耐低磷能力的检测 268 5.3.2 利用根系分泌有机酸特征检测植物抗缺磷胁迫的能力 272 5.3.3 植物固有抗低磷胁迫能力的检测 277 5.3.4 利用不同磷水平下铁含量变化特征判定植物的喀斯特适应性 281 参考文献 286 第6章 植物光呼吸及1,5-二磷酸核酮糖再生能力的检测 292 6.1 1,5-二磷酸核酮糖的来龙去脉 294 6.1.1 核酮糖-1,5-二磷酸羧化酶/加氧酶的羧化作用 295 6.1.2 核酮糖-1,5-二磷酸羧化酶/加氧酶的氧化作用 296 6.1.3 核酮糖-1,5-二磷酸羧化酶/加氧酶对环境的响应和调控 298 6.1.4 喀斯特适生植物核酮糖-1,5-二磷酸羧化酶/加氧酶特征 300 6.2 基于光/二氧化碳响应曲线的植物光呼吸份额的检测 301 6.2.1 原理 302 6.2.2 技术规程 302 6.2.3 应用实例 305 6.3 植物糖代谢中的糖酵解和磷酸戊糖途径份额的检测 307 6.3.1 原理 307 6.3.2 技术规程 309 6.3.3 应用实例 312 6.4 植物光合生长力的检测 314 6.4.1 原理 315 6.4.2 技术规程 315 6.4.3 应用实例 319 6.5 植物1,5-二磷酸核酮糖再生能力的检测 322 6.5.1 原理 323 6.5.2 技术规程 324 6.5.3 应用实例 327 参考文献 330 第7章 室内培养植物的喀斯特适生性评价 337 7.1 模拟喀斯特逆境下植物的生长及生理响应 338 7.1.1 模拟喀斯特逆境条件的选择 338 7.1.2 植物生长和抗逆境能力的在线测定 340 7.1.3 生理指标的选择和测定 345 7.1.4 不同植物生长及生理对不同逆境的响应差异 348 7.2 植物对模拟喀斯特逆境的生理响应与喀斯特适生性评价 351 7.2.1 构树和桑树对不同喀斯特逆境的响应 351 7.2.2 牵牛花、金银花和爬山虎对不同喀斯特逆境的响应 361 7.2.3 麻疯树和枫杨对不同喀斯特逆境的响应 383 7.2.4 综合评价 389 参考文献 391 第8章 自然生境下植物的喀斯特适生性评价 400 8.1 乔木树种喀斯特适生性评价 402 8.1.1 形态及生态特征 402 8.1.2 光合特征 405 8.1.3 叶绿素荧光特征 416 8.1.4 碳酸酐酶变化特征 418 8.1.5 无机碳利用特征和水分利用特征 421 8.1.6 综合评价 424 8.2 灌木树种喀斯特适生性评价 425 8.2.1 形态及生态特征 426 8.2.2 光合特征 428 8.2.3 叶绿素荧光特征 438 8.2.4 碳酸酐酶变化特征 439 8.2.5 无机碳利用特征和水分利用特征 440 8.2.6 综合评价 442 参考文献 443 Contents Chapter1 The adaptive mechanism of the karst-adaptable plants 1 1.1 Typical karstic soil environment 3 1.1.1 Carbonate versus calcareous soil 3 1.1.2 The formation and basic properties of calcareous soil 4 1.1.3 The acid base characteristics of calcareous soil 5 1.1.4 The water retention characteristics of calcareous soil 5 1.1.5 The nutrient characteristics of calcareous soil 7 1.1.6 Migration characteristics of calcium and magnesium among carbonate rocks, calcareous soil and the vegetation 7 1.2 Morphological characteristics of the karst-adaptable plants 9 1.2.1 Leaf morphological and anatomical characteristics 10 1.2.2 Morphological structure of roots, stems and plant types in plants 13 1.3 Physiological and ecological mechanisms of the karst-adaptable plants 17 1.3.1 Photosynthesis mechanism 18 1.3.2 Inorganic nutrition mechanism 25 1.3.3 Action mechanism of carbonic anhydrase 28 1.3.4 Biodiversity mechanism 36 1.3.5 Mechanism in the regulation of calcium and adaptation to the environment with high [bicarbonate] 46 1.3.6 The action mechanism of the rootexuded organic acids 50 1.4 Plants’ adaptation to karst environment versusz the stability of ecosystem 54 1.4.1 Regulation of water cycle in karst ecosystem by the karst-adaptable plants 54 1.4.2 Regulation of carbon cycle in karst ecosystem by the karst-adaptable plants 55 1.4.3 Regulation of nutrient cycle in karst ecosystem by the karstadaptable plants 56 1.4.4 The decisive role of the karstadaptable plants on the stability of the karst ecosystem 58 1.5 Plants’ adaptation to karst environment versus the ecological restoration in karst area 59 1.5.1 Selection, allocation of the karst-adaptable plants versus vegetation restoration 60 1.5.2 Plants’ adaptation to karst environment versus the management and administration of forest 61 1.5.3 The karst-adaptable plants versus the landscape construction in karst area 62 1.5.4 The karst-adaptable plants versus the eco-economy in karst area 63 Reference 65 Chapter2 Carbonic anhydrase (CA) in plants versus plants’adaptation to karst environment 89 2.1 Determination on carbonic anhydrase in plants 91 2.1.1 Determination on CA 91 2.1.2 Electrochemical measurement on CA in plants by antimony microelectrode 93 2.1.3 Technical procedures of determination on CA in plants 105 2.2 Response of CA in plants to karst stress 107 2.2.1 Response of CA to dehydration 108 2.2.2 Response of CA to simulated karstic drought 113 2.2.3 Response of CA to bicarbonate 125 2.2.4 Response of CA to phosphate and nutrients deficiency 129 2.2 5 Response of CA to salt adversity 131 2.3 CA activity versus identification of the karst-adaptable plants 133 2.3.1 Principle 133 2.3.2 Technical procedure 134 2.3.3 Application examples 136 References 137 Chapter3 Measurement of bicarbonate utilization by plants 142 3.1 The utilization of inorganic carbon by plants 143 3.1.1 CO2 assimilation in plants 144 3.1.2 The utilization of bicarbonate by plants 154 3.1.3 Strategy of inorganic carbon utilization by plants underkarstic stresses 155 3.2 Measurement for the daily average value of stable carbon isotopic composition in atmospheric carbon dioxide 157 3.2.1 Principle 157 3.2.2 Technical procedures 159 3.2.3 Application examples 161 3.3 Determination and evaluation on the ability of bicarbonate utilization by plants under natural habitat 164 3.3.1 Principle 165 3.3.2 Technical procedures 165 3.3.3 Application examples 167 3.4 Determination and evaluation on bicarbonate utilization and total plant photosynthetic carbon assimilation capacity under control experiment 168 3.4.1 Principle 169 3.4.2 Technical procedures 172 3.4.3 Application examples 175 3.5 Rapid screening for the plants of high efficient use on bicarbonate 177 3.5.1 Principle 178 3.5.2 Technical procedures 178 3.5.3 Application examples 180 References 184 Chapter4 Determination on drought resistance of plants 189 4.1 Characteristics of water use by the karst-adaptable plants 191 4.1.1 Water metabolism in plants 192 4.1.2 Utilization of metabolic water by plants 197 4.1.3 Water use strategy of plants underkarstic stresses 197 4.2 Water requirement versus drought resistance of plants 198 4.2.1 Determination of water requirement in plants 199 4.2.2 Water requirement of plants under drought stress 201 4.2.3 Determine the water requirement of new types of crops using the water requirement information of indicator plant 208 4.3 Leaf tension versus water status in plants 209 4.3.1 Foliar physiological capacitance versus leaf water potential 216 4.3.2 Leaf tension 216 4.3.3 Determination of leaf tension 222 4.3.4 Water status represented by leaf tension in plants 227 4.4 Rapid quantifying the inherent drought resistance of plants using electrophysiological Information 227 4.4.1 Principle 227 4.4.2 Technical procedures 230 4.4.3 Application examples 234 4.5 Rapid quantifying the inherent drought resistance of plants using chlorophyll fluorescence information 234 4.5.1 Principle 235 4.5.2 Technical procedures 237 4.5.3 Application examples 239 4.6 Evaluations on the drought resistance of plants according to the characteristics of the rootexuded malic acid 239 4.6.1 Principle 241 4.6.2 Technical procedures 245 4.6.3 Application examples 246 References 255 Chapter5 Determination on the low-nutrient tolerance of plants 255 5.1 Characteristics of nutrient utilization by the karstadaptable plants 256 5.1.1 Nitrogen utilization by plants 256 5.1.2 Phosphate utilization by plants 258 5.1.3 The absorption and utilization of microelements by plants 259 5.2 Determination on the capacity of nitrogen use by plants 260 5.2.1 Determination for the plants’resistance to low-ammonium environment 261 5.2.2 Determination on the capacity of nitrate use by plants 265 5.3 Determination on the low-P tolerance of plants 268 5.3.1 Determination of low-P tolerance based on kinetics of ion absorption by plants 268 5.3.2 Determination for the resistance to P deficiency according to rootexuded organic acids 272 5.3.3 Determination of inherent low-P tolerance 277 5.3.4 Determination on the plants’adaptation to karst environment according to the variation of iron content in plants under different phosphorus levels 281 References 286 Chapter6 Determination on photorespiration and regeneration of ribulose-1,5-disphosphate in plants 286 6.1 The ins and outs of ribulose-1,5-diphosphate 292 6.1.1 The carboxylation of ribulose -1,5-bishosphate carboxylase/oxygenase 294 6.1.2 The oxidation of ribulose-1,5-bishosphate carboxylase/oxygenase 295 6.1.3 Response and regulation of ribulose-1,5-bishosphate carboxylase/oxygenase on the environment 296 6.1.4 Characteristics of ribulose-1,5-bishosphate carboxylase/oxygenase in the karstadaptable Plants 298 6.2 Determination on the share of photorespiration in plant using the light/CO2 response curve 300 6.2.1 Principle 301 6.2.2 Technical procedures 302 6.2.3 Application examples 305 6.3 Determination on the share of glycolysis and pentose phosphate pathway in glucose Metabolism 307 6.3.1 Principle 307 6.3.2 Technical procedures 309 6.3.3 Application examples 312 6.4 Determination on the photosyntheticgrowth capability of plants 314 6.4.1 Principle 315 6.4.2 Technical procedures 315 6.4.3 Application examples 319 6.5 Determination on the regenerationribulose-1,5-diphosphate in plants 322 6.5.1 Principle 323 6.5.2 Technical procedures 324 6.5.3 Application examples 327 References 330 Chapter7 Evaluation on the plants’adaptation to karst environment under control experiment 337 7.1 The growth and physiological responses of plants under the simulated karstic stresses 338 7.1.1 The choice of simulated karstic stresses 338 7.1.2 The on-line measurement on growth and stress-resistance of plants 340 7.1.3 Selection and determination of physiological parameters 345 7.1.4 The growth and physiological response of plants to different stresses 348 7.2 Physiological responses of plants to simulated karstic stresses versus the evaluation on their adaptation to karst environment 351 7.2.1 The responses of Broussonetia papyrifera and Morus alba to different karstic stresses 351 7.2.2 The responses of Pharbitis nil, Lonicera japonica and Parthenocissus tricuspidata to different karstic stresses 361 7.2.3 The responses of Jatropha carcass and Pterocarya stenoptera to different karstic stresses 383 7.2.4 Synthetic evaluation 389 References 391 Chapter8 Evaluation on the plants adaptation to karst environment under natural Habitats 400 8.1 Evaluation on the karst-adaptability of tree species 402 8.1.1 Morphological and ecological characteristics 402 8.1.2 Photosynthetic characteristics 405 8.1.3 Chlorophyll fluorescence characteristics 416 8.1.4 Variation of carbonic anhydrase 418 8.1.5 Characteristics in water and inorganic carbon use 421 8.1.6 Synthetic evaluation 424 8.2 Evaluation on the karst-adaptability of shrub species 425 8.2.1 Morphological and ecological characteristics 426 8.2.2 Photosynthetic characteristics 428 8.2.3 Chlorophyll fluorescence characteristics 438 8.2.4 Variation characteristics of carbonic anhydrase 439 8.2.5 Characteristics in water and inorganic carbon use 440 8.2.6 Synthetic evaluation 442 References 443