0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 航空/航天 > 风力机叶片结构设计(英文版)

相同作者的商品

相同语种的商品

浏览历史

风力机叶片结构设计(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
风力机叶片结构设计(英文版)
  • 书号:9787030593047
    作者:Wang Tongguang,Li Hui,Chen Cheng,Ye Tingting
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:480
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥299.00元
    售价: ¥236.21元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    INTRODUCTION 1
    Part 1 Structure Design Basis for Wind Turbine Blade
    Chapter 1 BASIC PRINCIPLES 9
    1.1 DESIGN COORDINATION 9
    1.2 DESIGN BASIS 12
    1.3 STRUCTURE DESIGN 13
    1.4 STRUCTURE WEIGHT AND COST CONTROL 15
    Chapter 2 COMPOSITE BASIS 17
    2.1 BLADE COMPOSITE STRUCTURE COMPONENTS 21
    2.2 BLADE STRUCTURAL MATERIAL 25
    2.3 REINFORCED FIBRE 25
    2.4 RESIN 27
    2.5 OTHER STRUCTURAL MATERIALS 28
    2.6 MATERIAL SELECTION 30
    2.7 MECHANICAL TEST OF COMPOSITES 30
    2.7.1 Testing Techniques of Composites 30
    2.7.2 Test Process of Composites 34
    2.8 MANUFACTURABILITY OF COMPOSITES FOR BLADE 36
    Chapter 3 STRUCTURE DESIGN BASIS 43
    3.1 DESIGN BASIS 43
    3.1.1 Airfoil Contour 43
    3.1.2 Load Characteristics 45
    3.1.3 Load-carrying Forms 57
    3.2 CONFIGURATION DESIGN 59
    3.3 STRUCTURE DESIGN PROCESS 61
    Part 2 Structure Design for Wind Turbine Blade
    Chapter 4 STRUCTURAL COMPONENT DESIGN 67
    4.1 SPAR CAP DESIGN 67
    4.1.1 Configuration Categories for Spar Cap 70
    4.1.2 Spar Cap of Glass-fibre Fabric 72
    4.1.3 Spar Cap of Carbon-fibre Fabric 74
    4.1.4 Spar Cap of Laminated Bamboo-wood 76
    4.1.5 Spar Caps Made of Mixed Material 78
    4.1.6 Structure Design for Spar Caps 78
    4.1.7 Spar Cap Manufacturing Process Description 79
    4.2 DESIGN OF WEB AND FLANGE ADHESIVE BONDING 83
    4.2.1 Web Configuration Types 84
    4.2.2 Web Arrangements 88
    4.2.3 Web Structure Design 89
    4.2.4 Prospect of Web Processing 96
    4.3 SKIN DESIGN 96
    4.3.1 Configuration Design for Skin 97
    4.3.2 Summary of Skin Process 98
    4.4 SANDWICH STRUCTURE DESIGN 99
    4.4.1 Sandwich Structure Configurations 101
    4.4.2 Sandwich Structure Design 101
    4.4.3 Summary of Sandwich Structure Processes 104
    4.5 LEADING EDGE UD DESIGN AND LEADING EDGE ADHESIVE BONDING 105
    4.5.1 Structure Design for Leading edge UD 106
    4.5.2 Adhesive Bonding Forms 108
    4.6 TRAILING EDGE UD DESIGN AND TRAILING EDGE ADHESIVE BONDING 108
    4.6.1 Design for Trailing Edge UD Configuration 109
    4.6.2 Structure Design for Trailing Edge 111
    4.6.3 Summary of Trailing Edge Processing 119
    4.7 ROOT REINFORCEMENT DESIGN 121
    4.7.1 Structure Design for Root Reinforcement 121
    4.7.2 Process Overview of Blade Root Reinforcing Layer 122
    4.8 CONNECTION DESIGN OF BLADE ROOT 123
    4.8.1 Different Method for Mounting Bolt 124
    4.8.2 Configuration Design of Embedded Bolts 126
    4.8.3 Structure Design for Embedded Bolts 130
    4.8.4 Structure Design for T-bolt 137
    4.8.5 Overview of Blade Root Process Test 138
    4.9 DISCUSSION ABOUT OPTIMIZATION DESIGN 138
    4.9.1 Influence of Optimization and Non-optimization 138
    4.9.2 Structure Index 138
    Chapter 5 DESIGN OF FUNCTIONAL PARTS 140
    5.1 BLADE TIP DESIGN 140
    5.2 LIGHTNING PROTECTION DESIGN 140
    5.2.1 Air-termination System 142
    5.2.2 Lightning Protection Tests on Blades 143
    5.3 GEL COATS AND PAINTS 144
    5.4 DESIGN OF REINFORCED LAYERS FOR
    TRANSPORTATION 145
    5.5 BLADE ROOT COVER DESIGN 145
    5.6 DESIGN OF BALANCING CHAMBERS 146
    5.7 RAIN DEFLECTOR DESIGN 146
    5.8 PE PIPES CONNECTED WITH DOUBLE WEBS 147
    5.9 OTHER DESIGNS 147
    Part 3 Structure Design Methods for Wind Turbine Blade
    Chapter 6 STRUCTURE VERIFICATION PRINCIPLES 151
    6.1 GENERAL PRINCIPLES OF STRUCTURE VERIFICATION 152
    6.2 BLADE STRUCTURE VERIFICATION METHODS 152
    6.3 GENERAL INTRODUCTION OF BLADE STRUCTURE VERIFICATION 154
    6.3.1 Blade Topological Graph 154
    6.3.2 Stress Characteristics of Blade Components 154
    6.4 STRENGTH ANALYSIS 157
    6.5 STABILITY ANALYSIS 157
    6.6 DEFORMATION ANALYSIS 161
    6.7 DYNAMIC CHARACTERISTIC ANALYSIS 162
    6.8 ADHESIVE BONDING ANALYSIS 162
    6.9 INTERLAMINAR ANALYSIS 162
    6.10 FATIGUE ANALYSIS 163
    6.11 ADVANCED ANALYSIS 164
    Chapter 7 UNIDIMENSIONAL METHOD 165
    7.1 I-BEAM THEORY 165
    7.2 SIMPLIFICATION OF BLADE CROSS SECTION MODEL 168
    7.3 CALCULATION OF BLADE CROSS SECTION STRENGTH 171
    7.4 STRENGTH ANALYSIS OF BLADE CROSS SECTION 174
    7.5 CALCULATION OF BLADE BENDING DEFORMATION 175
    7.6 DEFLECTION ANALYSIS OF BLADE SECTION 177
    7.7 DEVIATION ANALYSIS WITH UNIDIMENSIONAL METHOD 177
    7.8 APPLICATION DEVELOPMENT OF UNIDIMENSIONAL METHOD 181
    Chapter 8 2D METHOD 183
    8.1 BLADE STRENGTH CALCULATION 184
    8.1.1 Normal Stress Calculation of Thin-walled Airfoil Structure 184
    8.1.2 Shear Stress Calculation of Thin-walled Airfoil 190
    8.1.3 Calculation of Blade Deflection 197
    8.2 CALCULATION OF BLADE NATURAL FREQUENCY AND CHARACTERISTIC MODE 201
    8.3 EQUIVALENT FATIGUE LOAD METHOD FOR FATIGUE DAMAGE CALCULATION 203
    8.4 2D ENGINEERING ALGORITHM 204
    8.5 FINITE ELEMENT METHOD OF 2D UNIFORM CROSS SECTION 206
    8.5.1 Finite element analysis of 2D shell model 206
    8.5.2 Finite element verification of 2D solid model 209
    Chapter 9 3D METHOD 211
    9.1 FINITE ELEMENT ANALYSIS OF WIND TURBINE BLADES 212
    9.2 FINITE ELEMENT MODELING OF BLADES 212
    9.2.1 Geometrical Shape 213
    9.2.2 The Coordinate System 214
    9.2.3 Structural Configuration 216
    9.2.4 Meshing 216
    9.2.5 Element Normal and Element Coordinate System 218
    9.2.6 Material Properties 219
    9.2.7 Direction of Material 220
    9.2.8 Spanwise Divisions 220
    9.2.9 Element Properties 220
    9.2.10 Mass of a Blade 222
    9.3 LOCAL REFINEMENT OF BLADE FINITE ELEMENT MODEL 223
    9.3.1 Refinement of TE Model 223
    9.3.2 Adhesive Bonding of Web Flange and Shell 224
    9.3.3 Blade Root Model 224
    9.3.4 Adjacent Component of Root Model 225
    9.3.5 Point Mass of Blade 225
    9.4 FINITE ELEMENT BOUNDARY AND LOADING OF BLADE 226
    9.4.1 Finite Element Boundary Conditions 226
    9.4.2 Ultimate Loading Form in Blade FEA 226
    9.4.3 Ultimate Envelop Load 227
    9.4.4 Concentrated Force Ultimate Loading 230
    9.4.5 Distributed Ultimate Loading 231
    9.4.6 Loading Type of Test Load 240
    9.4.7 Gravitational Load 243
    9.4.8 Fatigue Load 243
    Chapter 10 OTHER METHODS 244
    10.1 PROCEDURE OF BLADE MOULDING 244
    10.2 BLADE DATABASE 244
    Part 4 Structure Component Design Methods for Wind Turbine Blade
    Chapter 11 BASIC VERIFICATION ANALYSIS 249
    11.1 BASIC VERIFICATION OF BLADE 249
    11.2 SAFETY FACTOR OF STRUCTURE VERIFICATION 250
    11.2.1 Safety Factor of Structure Verification Defined in GL 2010 250
    11.2.2 Safety Factor of DNV Structure Verification 252
    11.3 STRENGTH VERIFICATION 254
    11.3.1 Failure Criterion 254
    11.3.2 Overall Ultimate Strength Verification 255
    11.3.3 Strength Verification of Hoisting Condition 256
    11.4 STIFFNESS VERIFICATION 259
    11.4.1 Criterion of Deflection Analysis 259
    11.4.2 Stiffness Distribution 260
    11.4.3 Tip Deflection 261
    11.5 ANALYSIS OF VIBRATION CHARACTERISTICS 262
    11.5.1 Natural Frequency and Mode of Vibration 262
    11.5.2 Campbell Chart of Blade Vibration 266
    11.6 OVERALL BUCKLING OF BLADE 270
    Chapter 12 LAMINATE ANALYSIS 272
    12.1 THEORY OF LAMINATE 272
    12.1.1 The Theory of Shell Theory to Composite Material 273
    12.1.2 Feature of Laminate 275
    12.1.3 Performance and Stiffness of Laminate 276
    12.1.4 The Strength Analysis of Laminate 279
    12.1.5 The Design Value for Structure 280
    12.2 DESIGN OF LAMINATE 281
    12.2.1 The Stiffness Prediction and Design of Laminate 281
    12.2.2 Preliminary Design of Laminate 282
    12.2.3 Consideration of Environmental Influence 282
    12.3 BUCKLING OF THE LAMINATE 283
    12.3.1 Buckling Calculation Method 284
    12.3.2 Boundary Conditions 286
    12.3.3 Examples of Theoretical Solution 286
    12.3.4 Engineering Algorithm 290
    12.3.5 FEM Example 292
    12.3.6 FEA of Laminate 293
    12.4 FIBRE FAILURE ANALYSIS 294
    12.5 RESIN FAILURE ANALYSIS 296
    12.6 APPLICATION OF LAMINATES ON BLADES 300
    Chapter 13 ANALYSIS OF SANDWICH STRUCTURE 302
    13.1 BASIS OF SANDWICH STRUCTURE 302
    13.2 SANDWICH STRUCTURE DEAIGN 303
    13.2.1 Design Principle of Sandwich Structure 303
    13.2.2 Design Key Points 304
    13.3 ANALYSIS OF SANDWICH STRUCTURE 304
    13.3.1 Basic Parameters 304
    13.3.2 Analysis of Local Failure 305
    13.4 ANALYSIS METHODS OF SANDWICH STRUCTURE 307
    13.4.1 Sandwich with Isotropic Panels 307
    13.4.2 Sandwich with Orthotropic Panels 315
    13.4.3 Engineering Algorithm of Local Instability 316
    13.4.4 Finite Element Analysis 318
    13.4.5 Local Secondary Analysis Method 319
    13.5 APPLICATION OF SANDWICH STRUCTURE ON BLADES .320
    13.6 ANALYSIS OF WEB BUCKLING 320
    13.7 ANALYSIS OF BLADE LOCAL BUCKLING 325
    13.8 BUCKLING ANALYSIS OF BLADE CROSS SECTION 327
    Chapter 14 ANALYSIS OF ADHESIVE BONDING 328
    14.1 ADHESIVE BONDING 328
    14.1.1 Adhesive Characteristics 329
    14.1.2 Advantages and Disadvantages of Composite Bonding 330
    14.2 DESIGN OF ADHESIVE BONDING 332
    14.2.1 General Design Principles 332
    14.2.2 Basic Failure Modes 332
    14.2.3 Basic Bonding Methods 333
    14.2.4 Selection of Geometric Parameters 334
    14.2.5 Fibre Direction 336
    14.2.6 Design of Bonding Detail 337
    14.3 BONDING ENGINEERING ALGORITHM 338
    14.3.1 Calculation of Static Strength 338
    14.3.2 Durability Analysis 342
    14.4 ANALYSIS OF ADHESIVE BONDING 343
    14.5 ADHESIVE BONDING APPLICATION ON BLADE 345
    14.5.1 Bonding between Web Flanges and Shells 346
    14.5.2 Bonding of Trailing Edge 347
    14.5.3 Control of Bonding Processing 348
    Chapter 15 ANALYSIS OF BOLTED CONNECTION 349
    15.1 STRUCTURE VERIFICATION OF BLADE ROOT WITH MBEDDED INSERTS 350
    15.1.1 Types of the Root End 350
    15.1.2 Global Finite Element Analysis 354
    15.1.3 Local Analysis of Contact Surface 359
    15.2 STRUCTURE VERIFICATION OF T-BOLT PROCESSING 369
    15.2.1 Structure Analysis Procedure 369
    15.2.2 Global Finite Element Analysis 370
    15.2.3 Bolt Engineering Method 372
    Part 5 Special Subject for Structure Design of Wind Turbine Blade
    Chapter 16 FATIGUE ANALYSIS 377
    16.1 THEORETICAL BASIS 377
    16.1.1 Cyclic Load 378
    16.1.2 Fatigue Lifetime 379
    16.1.3 Stress ratio 379
    16.1.4 S-N curve 381
    16.1.5 Diagram of Fatigue Limit 381
    16.2 FATIGUE OF COMPOSITES 383
    16.2.1 Model of fatigue accumulated damage 384
    16.2.2 Estimation Method of Fatigue Lifetime 386
    16.3 VERIFICATION PROCESS OF BLADE FATIGUE 387
    16.4 FATIGUE LOAD 389
    16.5 SELECTION OF CRITICAL POINT OF FATIGUE 389
    16.6 METHODS OF BLADE FATIGUE VERIFICATION 391
    16.6.1 Coordinate System 392
    16.6.2 Transformation Matrix of Stress 392
    16.6.3 Equivalent Stress 393
    16.6.4 Rain-flow Counting 394
    16.6.5 Safety Factor of Fatigue Analysis 396
    16.7 IDENTIFICATION OF BLADE FATIGUE DAMAGE 397
    Chapter 17 ANALYSIS OF IMPACT RESISTANCE OF BLADE 399
    17.1 ANALYSIS TECHNIQUES OF IMPACT DAMAGE 400
    17.1.1 Methods of Engineering Analysis 401
    17.1.2 Techniques of Load Processing 402
    17.2 METHODS OF EXPLICIT TIME INTEGRATION 404
    17.3 CONSTITUTIVE RELATION OF MATERIAL 405
    17.3.1 Material of Bird-model Impact 405
    17.3.2 Material of Hail Impact 405
    17.4 VERIFICATION OF RESISTANCE FOR IMPACT OF BLADE 406
    17.4.1 Impact-resistance Model of Blade 407
    17.4.2 Analysis of Blade Resistance for Impact 407
    17.5 TEST OF BLADE RESISTANCE FOR IMPACT 408
    Chapter 18 ANALYSES OF FRACTURE MECHANICS AND INTER LAMINAR 409
    18.1 FRACTURE ANALYSIS of COMPOSITE MATERIALS 409
    18.2 MAIN PARAMETERS IN FRACTURE MECHANICS 410
    18.3 FRACTURE MECHANICS CALCULATION METHOD 411
    18.3.1 Theoretical Solution of a Center Cracked Finite Width Plate 411
    18.3.2 The Stress Intensity Factor and Extrapolation 412
    18.3.3 Domain Method J-integration and Equivalent Integration 417
    18.3.4 Strain energy release rate and virtual crack method 419
    18.4 DUMMY NODE FRACTURE ELEMENT 420
    18.4.1 Dummy Node Fracture Element of Linear Crack 420
    18.4.2 Dummy Node Fracture Element of a Plane Crack 424
    18.5 INTERLAMINAR STRESS OF COMPOSITES 427
    18.5.1 Shear Stress Distribution of Interlaminar Interface 430
    18.5.2 Interlaminar Shear Stress Distribution Along Thickness Direction 431
    18.5.3 Interlaminar Normal Stress 431
    18.5.4 Distribution of Axial Displacement on the Surface of Laminates 432
    18.6 INTERLAMINAR FAILURE AND FRACTURE FAILURE OF BLADE 433
    Chapter 19 RELIABILITY ANALYSIS 434
    19.1 COMPOSITES DAMAGE TOLERANCE 434
    19.1.1 Overview 434
    19.1.2 Three Elements of Damage Tolerance 435
    19.2 RELIABILITY 437
    19.2.1 Technical Basis of Reliability 438
    19.2.2 Reliability Evaluation Index 439
    19.2.3 Reliability Design of Structural System 440
    Chapter 20 FULL-SCALE TESTING OF BLADES 442
    20.1 OVERVIEW 442
    20.2 MATERIAL TESTING AND COMPONENT TESTING 442
    20.3 INTRODUCTION OF FULL-SCALE TESTING OF BLADES 445
    20.3.1 Basic Principle and Relevant Standards 445
    20.3.2 Test Items and Procedures 445
    20.4 BLADE DATA AND REQUIREMENTS FOR SPECIMENS 446
    20.4.1 Blade Data 446
    20.4.2 Requirements for Specimens 447
    20.5 TEST STAND 447
    20.5.1 Loading Directions 447
    20.5.2 Loading Types 448
    20.5.3 Other Devices and Tooling 449
    20.6 DESIGN LOAD AND TEST LOAD 452
    20.7 FAILURE MODES 452
    20.8 MASS AND DYNAMIC PROPERTY TESTS 453
    20.9 STATIC STRENGTH TEST 454
    20.10 FATIGUE TEST 457
    20.11 DESTRUCTIVE TEST 458
    Chapter 21 SUMMARY AND PROSPECT 459
    21.1 DESIGN AND PROCEDURES 459
    21.2 VERIFICATION AND EXPERIENCE 461
    21.3 HORIZONS BEYOND DESIGN AND VERIFICATION 462
    21.4 PROSPECTS FOR THE FUTURE 463
    21.5 BACK TO THE ORIGIN-STRUCTURAL MECHANICS OF COMPOSITE THIN-WALLED BARS 468
    REFERENCES 470
    Appendix A COORDINATE SYSTEM 472
    Appendix B BLADE WB45.3 475
    INDEX 477
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证