0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 应用数学 > 吴文俊全集·数学机械化I

相同作者的商品

相同语种的商品

浏览历史

吴文俊全集·数学机械化I


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
吴文俊全集·数学机械化I
  • 书号:9787508855509
    作者:吴文俊
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:371
    字数:479000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2019-05-01
  • 所属分类:
  • 定价: ¥188.00元
    售价: ¥148.52元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本卷收录了吴文俊的Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving and Polynomial Equations-Solving 一书. 本书是围绕作者命名的“数学机械化”这一中心议题而陆续发表的一系列论文的综述. 本书试图以构造性与算法化的方式来研究数学, 使数学推理机械化以至于自动化, 由此减轻繁琐的脑力劳动.
  全书分成三个部分:第一部分考虑数学机械化的发展历史, 特别强调在古代中国的发展历史. 第二部分给出求解多项式方程组所依据的基本原理与特征列方法. 作为这一方法的基础, 本书还论述了构造性代数几何中的若干问题. 第三部分给出了特征列方法在几何定理证明与发现、机器人、天体力学、全局优化和计算机辅助设计等领域中的应用.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Chapter 1 Polynomial Equations-Solving in Ancient Times, Mainly in Ancient China 1
    1.1 A Brief Description of History of Ancient China and Mathematics Classics in Ancient China 1
    1.2 Polynomial Equations-Solving in Ancient China 9
    1.3 Polynomial Equations-Solving in Ancient Times beyond China and the Program of Descartes 24
    Chapter 2 Historical Development of Geometry Theorem-Proving and Geometry Problem-Solving in Ancient Times 31
    2.1 Geometry Theorem-Proving from Euclid to Hilbert 31
    2.2 Geometry Theorem-Proving in the Computer Age 43
    2.3 Geometry Problem-Solving and Geometry Theorem-Proving in Ancient China 47
    Chapter 3 Algebraic Varieties as Zero-Sets and Characteristic-Set Method 65
    3.1 Affine and Projective SpaceExtended Points and Specialization 65
    3.2 Algebraic Varieties and Zero-Sets 73
    3.3 Polsets and Ascending SetsPartial Ordering 85
    3.4 Characteristic Set of a Polset and Well-Ordering Principle 93
    3.5 Zero-Decomposition Theorems 104
    3.6 Variety-Decomposition Theorems 117
    Chapter 4 Some Topics in Computer Algebra 130
    4.1 Tuples of integers 130
    4.2 Well-Arranged Basis of a Polynomial Ideal 138
    4.3 Well-Behaved Basis of a Polynomial Idea l45
    4.4 Properties of Well-Behaved Basis and its Relationship with Groebner Basis 153
    4.5 Factorization and GCD of Multivariate Polynomials over Arbitrary Extension Fields 164
    Chapter 5 Some Topics in Computational Algebraic Geometry 175
    5.1 Some Important Characters of Algebraic Varieties Complex and Real Varieties 175
    5.2 Algebraic Correspondence and Chow Form 190
    5.3 Chern Classes and Chern Numbers of an Irreducible Algebraic Variety with Arbitrary Singularities 202
    5.4 A Projection Theorem on Quasi-Varieties 211
    5.5 Extremal Properties of Real Polynomials 220
    Chapter 6 Applications to Polynomial Equations-Solving 234
    6.1 Basic Principles of Polynomial Equations-Solving: The Char-Set Method 234
    6.2 A Hybrid Method of Polynomial Equations-Solving 244
    6.3 Solving of Problems in Enumerative Geometry 256
    6.4 Central Configurations in Planet Motions and Vortex Motions 266
    6.5 Solving of Inverse Kinematic Equations in Robotics 277
    Chapter 7 Appicaltions to Geometry Theorem-Proving 290
    7.1 Basic Principles of Mechanical Geometry Theorem-Proving 290
    7.2 Mechanical Proving of Geometry Theorems of Hilbertian Type 301
    7.3 Mechanical Proving of Geometry Theorems involving Equalities Alone 316
    7.4 Mechanical Proving of Geometry Theorems involving Inequalities 327
    Chapter 8 Diverse Applications 341
    8.1 Applications to Automated Discovering of Unknown Relations and Automated Determination of Geometric Loci 341
    8.2 yApplications to Problems involving Inequalities, Optimization Problems, and Non-Linear Programming 353
    8.3 Applications to 4-Bar Linkage Design 363
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证