0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 信息技术 > 电子科学与技术 > X射线脉冲星导航:原理与应用(英文版)

相同作者的商品

相同语种的商品

浏览历史

X射线脉冲星导航:原理与应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
X射线脉冲星导航:原理与应用(英文版)
  • 书号:9787030647719
    作者:郑伟,王奕迪
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:222
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥394.00元
    售价: ¥311.26元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

全书共8章,立足于解决X射线脉冲星导航存在的问题并拓展其应用范围。在阐述X射线脉冲星导航原理的基础上,给出了在轨动态信号处理的方法;研究了X射线脉冲星导航系统误差传播机理以及相应的系统误差补偿方法;阐述了以X射线脉冲星为主的组合导航方法、基于脉冲星差分观测的航天器自主导航方法,构建了X射线脉冲星导航地面仿真验证系统。这些均是作者多年的成果,有一定理论深度且应用前景好。本书的许多成果在国际上尚属首次公开发表,具有较高理论价值。同时,书中所提方法瞄准航天器自主导航面临的具体问题及难点,对相关技术问题的解决有较好的应用价值。

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 Basic Concept of Spacecraft Autonomous Navigation System 1
    1.1.1 Definition of Spacecraft Autonomous Navigation System 1
    1.1.2 Necessity of Autonomous Navigation Systems 1
    1.2 Three Main Types of Spacecraft Autonomous Navigation Systems 3
    1.2.1 Inertial Navigation System 3
    1.2.2 Celestial Navigation System 4
    1.2.3 Navigation Satellite System 6
    1.3 Review of X-Ray Pulsar-Based Navigation 9
    1.3.1 Brief Introduction of Pulsar 9
    1.3.2 Brief Introduction of X-Ray Pulsar-Based Navigation 10
    1.3.3 Famous Programs on XPNAV 11
    1.3.4 Progresses of Key Techniques 13
    References 22
    2 Fundamential of the X-Ray Pulsar-Based Navigation 25
    2.1 Space-Time Reference Frame 25
    2.1.1 Coordinate System 25
    2.1.2 General Relativistic Time System 27
    2.2 Timing Model 32
    2.2.1 Time and Phase Model 33
    2.2.2 Time Transfer Model 35
    2.3 Spacecraft Orbital Dynamics and Attitude Dynamics Models 37
    2.3.1 Spacecraft Orbital Dynamics Model 37
    2.3.2 Spacecraft Attitude Dynamics Model 40
    2.4 X-Ray Pulsar-Based Spacecraft Positioning 43
    2.4.1 Basic Principle 43
    2.4.2 Working Flow 45
    2.4.3 Analysis on the X-Ray Detector Configuration Scheme 46
    2.5 X-Ray Pulsar-Based Spacecraft Time Keeping 48
    2.5.1 Basic Principle 48
    2.5.2 System Equation 49
    2.5.3 Feasibility Analysis of Time-Keeping via the Observation of One Pulsar 50
    2.6 X-Ray Pulsar-Based Spacecraft Attitude Determination 52
    2.6.1 Basic Principle 52
    2.6.2 Means of Realizing Direction via the Observation of Pulsar 56
    References 58
    3 X-Ray Pulsar Signal Processing 61
    3.1 X-Ray Pulsar Signal Model 61
    3.2 Profile Recovery 62
    3.2.1 Epoch Folding 62
    3.2.2 Period Search 63
    3.2.3 Enhancing the Signal to Noise Ratio of Profile 68
    3.3 Pulse TOA Calculation for Stationary Case 78
    3.3.1 Pulse TOA Calculation Methods 78
    3.3.2 Performance Analysis 80
    3.4 Pulse TOA Calculation for Dynamics Case 81
    3.4.1 Improved Phase Propagation Model 81
    3.4.2 Linearized Phase Propagation Model 83
    3.4.3 Estimation of Phase and Doppler Frequency 87
    3.4.4 Simulation Analysis 91
    3.5 Data Processing of XPNAV-1 Data 100
    3.5.1 Introduction of the Measured Data of XPNAV-1 100
    3.5.2 Data Processing for the Measured Data 101
    3.6 Summary 106
    References 107
    4 Errors Within the Time Transfer Model and Compensation Methods for Earth-Orbing Spacecraft 109
    4.1 Modeling of Error Sources Within Time Transfer Model 109
    4.1.1 Position Error of Central Gravitational Body 110
    4.1.2 Position Error of the Sun 110
    4.1.3 Position Error of Other Celestial Bodies 111
    4.1.4 Angular Position Error of Pulsar 112
    4.1.5 Distance Error of Pulsar 112
    4.1.6 Error Within Proper Motion Velocity of Pulsar 113
    4.1.7 Error Within Spacecraft-Borne Atomic Clock 113
    4.2 Impact of Error Sources 113
    4.2.1 Impact of Error Sources on Time Transfer Model 114
    4.2.2 Impact of Error Source on Template 120
    4.2.3 Impact of Error Source on Positioning Performance 122
    4.3 Analysis of Propagation Property of Major Error Sources 125
    4.3.1 Propagation Property of Planet Ephemeris Error 125
    4.3.2 Propagation Property of Pulsar Angular Position Error 129
    4.3.3 Propagation Property of Pulsar Distance Error 130
    4.3.4 Propagation Property of Clock Error of Spacecraft-Borne Atomic Clock 131
    4.4 Systematic Biases Compensation Method Based on Augmented State 133
    4.4.1 Navigation System 133
    4.4.2 Observability Analysis 135
    4.4.3 Simulation Analysis 138
    4.5 Systematic Biases Compensation Method Based on Time-Differenced Measurement 139
    4.5.1 Time-Differenced Measurement Model 139
    4.5.2 Observability Analysis 139
    4.5.3 Modified Unscented Kalman Filter 141
    4.5.4 Simulation Analysis 144
    4.6 Summary 148
    References 149
    5 X-Ray Pulsar/Multiple Measurement Information Fused Navigation 151
    5.1 XNAV/CNS Integrated Navigation Framework 151
    5.1.1 Traditional Celestial Measurement Model 152
    5.1.2 Information Fusion Method 154
    5.1.3 Error Compensation Method Based on Error Separation Principle 159
    5.1.4 Simulation Analysis 161
    5.2 XNAV/INS Integrated Navigation Framework 167
    5.2.1 Composition of XNAV/INS Integrated Navigation System 168
    5.2.2 Dynamic Model 169
    5.2.3 Observation Model 169
    5.2.4 Simulation Analysis 170
    5.3 Summary 173
    References 173
    6 Spacecraft Autonomous Navigation Using the X-Ray Pulsar Time Difference of Arrival 175
    6.1 Shortcomings of Autonomous Navigation Using Inter-satellite Link 175
    6.1.1 Inter-satellite Link Ranging Measurement 175
    6.1.2 Mathematical Analysis for Orbit Determination Using Inter-satellite Link Ranging 177
    6.2 System Observation Model and Observability Analysis 180
    6.2.1 Measurement Model for Multiple Spacecraft Observing One Pulsar 180
    6.2.2 Ranging Measurement Using Inter-satellite Link 182
    6.2.3 Observability Analysis 183
    6.3 Satellite Constellation Autonomous Navigation Using TDOA of Pulsar 185
    6.3.1 Scheme Design 185
    6.3.2 Simulation Analysis 187
    6.4 Spacecraft Autonomous Navigation Network 188
    6.4.1 Framework of IoS 189
    6.4.2 A Detailed Design for IoS that Support the Flight from the Earth to Mars 190
    6.4.3 Simulation Analysis 197
    6.5 Summary 201
    References 201
    7 Ground-Based Simulation and Verification System for X-Ray Pulsar-Based Navigation 203
    7.1 Overall Design 203
    7.1.1 Module Design 203
    7.1.2 Physics Configuration 204
    7.2 All-Digital Simulation and Verification Mode 205
    7.2.1 A Design Framework of the Pulsar Signal Processing Software System 205
    7.2.2 System Composition 206
    7.2.3 Simulation Example 209
    7.3 Semi-physical Simulation and Verification Mode 210
    7.3.1 Components of Semi-physical Simulation System 210
    7.3.2 Dynamic Signal Simulation Experiment 212
    7.3.3 Energy Spectrum Experiment 215
    7.3.4 X-Ray Detector Test 215
    7.4 Summary 220
    References 221
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证