目录 《岩石力学与工程研究著作丛书》序 《岩石力学与工程研究著作丛书》编者的话 前言 第1章绪论 1 1.1 地下工程中的岩爆概况 1 1.2 岩爆基本概念 3 1.2.1 岩爆定义 3 1.2.2 岩爆分类 4 1.3 岩爆理论研究 6 1.3.1 岩爆静力学研究 6 1.3.2 岩爆动力学研究 8 1.3.3 岩爆准则 9 1.4 岩爆实验研究现状 11 1.5 岩爆物理模拟实验的新进展 13 参考文献 15 第2章应变岩爆实验系统与方法 23 2.1 工程现场岩爆特征及演化过程 23 2.1.1 国内外工程现场岩爆特征 23 2.1.2 应变岩爆演化过程 27 2.2 应变岩爆实验系统设计原理 28 2.2.1 岩爆实验系统应具备功能 28 2.2.2 围岩力学行为转化 28 2.2.3 力学行为转化的物理模型 30 2.3 应变岩爆实验系统组成 31 2.3.1 应变岩爆实验系统 31 2.3.2 实验主机系统 33 2.3.3 液压控制系统 34 2.3.4 力和变形数据采集系统 35 2.3.5 声发射监测系统 36 2.3.6 高速图像记录系统 40 2.4 应变岩爆实验方法 41 2.4.1 岩石基本物理力学实验 41 2.4.2 应变岩爆应力路径 41 2.4.3 应变岩爆实验设计 44 2.4.4 应变岩爆实验步骤 49 参考文献 50 第3章应变岩爆实验分析 53 3.1 应变岩爆实验影响因素 53 3.1.1 岩石矿物成分 53 3.1.2 岩石结构 54 3.1.3 载荷水平 54 3.1.4 实验机刚度 56 3.2 应变岩爆实验分析项目 57 3.3 典型岩石应变岩爆实验结果 58 3.3.1 应变岩爆实验基本参数 58 3.3.2 应变岩爆实验设计 66 3.3.3 应变岩爆实验特征 68 3.4 不同应力路径应变岩爆破坏特征 106 3.4.1 应力路径 107 3.4.2 破坏形态 108 3.5 应变岩爆破坏过程分析 111 参考文献 114 第4章应变岩爆声发射频谱分析 116 4.1 声发射技术简介 116 4.1.1 概述 116 4.1.2 声发射原理 119 4.2 应变岩爆声发射特征 126 4.2.1 声发射仪器及参数 126 4.2.2 声发射信号主频特征 127 4.2.3 声发射参数特征 136 4.3 应变岩爆微裂纹特征与声发射频谱关系 153 4.3.1 岩石破坏过程裂纹特征和声发射频谱关系 153 4.3.2 莱州花岗岩微裂纹与声发射频谱关系 154 4.3.3 北山花岗岩微裂纹与声发射频谱关系 169 4.3.4 芙蓉玄武岩微裂纹与声发射频谱关系 185 参考文献 201 第5章岩体矿物成分和结构对应变岩爆的影响 204 5.1 黏土矿物含量对应变岩爆的影响 204 5.2 岩体结构与岩石力学行为 209 5.2.1 结构面及其力学特性 209 5.2.2 含层理面岩体的强度特性 211 5.2.3 现场岩爆的岩体结构效应 214 5.3 层状结构砂岩岩爆实验设计 215 5.3.1 砂岩试件的矿物组成 215 5.3.2 砂岩试件的基本力学性质 216 5.3.3 受结构面影响的应变岩爆实验设计 217 5.4 层状结构砂岩应变岩爆特征 219 5.4.1 试件结构面与卸载面垂直时实验结果 219 5.4.2 试件结构面与卸载面平行时实验结果 225 5.4.3 层状结构砂岩应变岩爆爆坑特征 230 5.4.4 层状结构砂岩应变岩爆的趋势 233 参考文献 233 第6章应变岩爆的岩体刚度效应 235 6.1 岩体刚度的基本概念 235 6.2 岩体刚度效应对岩爆影响的实验研究 237 6.2.1 应变岩爆实验设计 237 6.2.2 不同岩性的岩体刚度效应 238 6.2.3 不同实验机的岩体刚度效应 240 6.2.4 不同结构面的岩体刚度效应 245 6.3 不同围岩条件下岩体刚度效应数值分析 246 6.3.1 颗粒流程序简介 246 6.3.2 应变岩爆数值模型 248 6.3.3 不同刚度比条件下的应变岩爆数值分析 252 6.3.4 刚度比对应变岩爆的影响分析 253 6.4 不同结构面条件下的岩体刚度效应数值分析 260 6.4.1 单组结构面 260 6.4.2 双组对称结构面 267 6.4.3 双组非对称结构面 272 6.4.4 结构面特性影响 273 参考文献 276 第7章应变岩爆的碎屑特征 279 7.1 应变岩爆碎屑分类 279 7.1.1 粒组划分方法 279 7.1.2 质量分布特征 280 7.1.3 尺度特征 295 7.2 应变岩爆碎屑分形特征 301 7.2.1 分形维数计算方法 301 7.2.2 分形特征分析 302 7.3 层状结构砂岩岩爆实验碎屑特征 304 7.3.1 碎屑分组及其质量频率特征 304 7.3.2 碎屑尺度特征 306 7.3.3 微裂纹分形特征 306 7.3.4 卸载面爆坑形态分形特征 310 7.3.5 应变岩爆破坏程度与分形特征的关系 313 参考文献 314 第8章应变岩爆工程实例物理模拟实验 315 8.1 大屯姚桥煤矿及孔庄煤矿煤岩爆 315 8.1.1 大屯矿区工程概述 315 8.1.2 岩爆概况 321 8.1.3 岩爆物理模拟实验 322 8.1.4 岩爆可能性分析 326 8.2 锦屏水电站大理岩岩爆 329 8.2.1 锦屏水电站工程概述 329 8.2.2 岩爆概况 333 8.2.3 岩爆物理模拟实验 335 8.2.4 岩爆可能性分析 349 8.3 加拿大克瑞顿矿花岗岩及加森矿橄榄岩岩爆 350 8.3.1 岩样基本情况 350 8.3.2 岩爆物理模拟实验 353 8.3.3 岩爆可能性分析 369 8.4 意大利大理岩岩爆 371 8.4.1 卡拉拉采石场岩爆现象概述 371 8.4.2 岩爆物理模拟实验 372 8.4.3 岩爆可能性分析 381 参考文献 381 索引 383 Contents Preface to the series of works on rock mechanics and engineering Editor’s foreword to the series of works on rock mechanics and engineering Preface 1 Introduction 1 1.1 Survey of rock bursts in underground engineering 1 1.2 General concepts of rock bursts 3 1.2.1 Definition for rock bursts 3 1.2.2 Classification for rock bursts 4 1.3 Rock burst mechanism—the theoretical exploration 6 1.3.1 Statistic analysis 6 1.3.2 Kinetics analysis 8 1.3.3 Criteria for rock bursts 9 1.4 Rock burst mechanism—the experimental investigation 11 1.5 Advances in physical simulation of rock bursts 13 References 15 2 Strainburst testing system and experimental methodology 23 2.1 Characteristics and evolutions of insitu rock bursts 23 2.1.1 Characteristics of insitu rock bursts in domestic and overseas 23 2.1.2 Evolution of strainburst problems 27 2.2 Design principles for strainburst testing system 28 2.2.1 Functions of strainburst testing system 28 2.2.2 Behaviour transition for surrounding rock mass 28 2.2.3 Physical model of the behaviour transition 30 2.3 Constitution for strainburst testing system 31 2.3.1 Overview 31 2.3.2 Experimental host system 33 2.3.3 Hydraulic pressure controlling system 34 2.3.4 Data acquisition system for forces and displacements 35 2.3.5 AE monitoring system 36 2.3.6 High speed digital recording system 40 2.4 Methodology of strainburst tests 41 2.4.1 Tests for physicalmechanical properties of rock specimen 41 2.4.2 Characteristics of stress paths for strainbursts 41 2.4.3 Experiment design for strainbursts 44 2.4.4 Testing procedure for strainbursts 49 References 50 3 Analyses for strainburst tests 53 3.1 Factors influencing strainbursts 53 3.1.1 Mineral composition of rock mass 53 3.1.2 Rock structure 54 3.1.3 Stress level 54 3.1.4 Machine stiffness 56 3.2 Analysis items for strainburst tests 57 3.3 Experiment results of strainbursts on rocks 58 3.3.1 Physicalmechanical properties of rock specimens 58 3.3.2 Strainburst experiment design 66 3.3.3 Strainburst experiment phenomenon 68 3.4 Features of strainburst failure under different stress paths 106 3.4.1 Stress paths 107 3.4.2 Failure patterns 108 3.5 Progressive failure of strainbursts 111 References 114 4 Frequency spectrum analyses for AE signal in strainburst experiments 116 4.1 AE activity 116 4.1.1 Brief introduction 116 4.1.2 Principles of AE 119 4.2 AE characteristics for strainbursts 126 4.2.1 Parameters for AE instrument 126 4.2.2 Major frequency features for AE signal 127 4.2.3 Parametric features for AE signal 136 4.3 Relations between cracks and AE frequency spectrum features for strainbursts 153 4.3.1 Relations between cracks and AE frequency spectrum features during rockfailure 153 4.3.2 Analysis of the relations between cracks and AE frequency spectrum features for Laizhou granite 154 4.3.3 Analysis of the relations between cracks and AE frequency spectrum features for Beishan granite 169 4.3.4 Analysis of the relations between cracks and AE frequency spectrum features for Furong basalt 185 References 201 5 Influences of mineral compositions and rock structures on strainbursts 204 5.1 Effects of clay minerals contents on strainburst proneness 204 5.2 Rock mass structure and its influences on rock behaviour 209 5.2.1 Structural plane and its mechanics features 209 5.2.2 Strength characteristics of stratified rocks 211 5.2.3 Rock structure effect on insitu rock bursts 214 5.3 Strainburst experiment design for stratified sandstone 215 5.3.1 Mineral components of sandstone specimens 215 5.3.2 Basic mechanical properties of sandstone specimens 216 5.3.3 Strainburst experiment design for the rock containing structural planes 217 5.4 Characteristics of strainbursts for sandstone specimens containing structural planes 219 5.4.1 Experimental results on specimen with unloading surface perpendicular to the structural planes 219 5.4.2 Experimental results on specimen with unloading surface parallel to the structural planes 225 5.4.3 Features of the burst pits for sandstone containing layered structural planes after the strainburst tests 230 5.4.4 Effects of beddings appearance on strainburst proneness 233 References 233 6 Influences of rock mass stiffness on strainbursts 235 6.1 Concepts of rock mass stiffness 235 6.2 Experimental study of rock mass stiffness effects on strainbursts 237 6.2.1 Strainburst experiment design 237 6.2.2 Effects of rock mass stiffness 238 6.2.3 Effects of machine stiffness 240 6.2.4 Effects of rock structure appearances 245 6.3 Numerical study on effects of rock mass stiffness for strainbursts in the surrounding rocks under different boundary conditions 246 6.3.1 Introduction on Particle Flow Code(PFC) 246 6.3.2 Numerical model for strainbursts 248 6.3.3 Numerical analysis of strainbursts under different stiffness ratios 252 6.3.4 Analysis of influences of the stiffness ratio on strainbursts 253 6.4 Numerical analysis of stiffness effects of rock mass with different structural plane conditions 260 6.4.1 Analysis of the stiffness effects of single structural planes 260 6.4.2 Analysis of the stiffness effects of two symmetrical structural planes 267 6.4.3 Analysis of the stiffness effects of two asymmetrical structural planes 272 6.4.4 Analysis of the stiffness effects of rock mass caused by different structural plane features 273 References 276 7 Characteristics of fragmentation of rock specimen in strainburst test 279 7.1 Classification of rock fragments 279 7.1.1 Method for grouping the rock fragments 279 7.1.2 Massfrequency distribution 280 7.1.3 Characterization of fragments 295 7.2 Fractal characteristics of rock fragments for strainburst tests 301 7.2.1 Methods for calculation of fractal dimensions 301 7.2.2 Fractal analysis 302 7.3 Characterization of fragments for strainburst tests on stratified sandstones 304 7.3.1 Fragment grouping and its massfrequency distributions 304 7.3.2 Characterization of fragments scales 306 7.3.3 Fractal characteristics for cracks 306 7.3.4 Fractal characteristics for shapes of the burst pits 310 7.3.5 Relation between strainburst damage severities and fractal characteristics 313 References 314 8 Physical modelling experiments on insitu strainburst examples 315 8.1 Strainbursts in Yaoqiao and Kongzhuang coal mines in Datun mining district 315 8.1.1 Background of Datun mining district 315 8.1.2 General situation of rock bursts 321 8.1.3 Physical modelling experiments 322 8.1.4 Rock burst proneness analysis 326 8.2 Strainburst in marble rock tunnels of Jinping Hydropower Station 329 8.2.1 Background of Jinping Hydropower Station project 329 8.2.2 General situation of rock bursts 333 8.2.3 Physical modelling experiments 335 8.2.4 Rock burst proneness analysis 349 8.3 Strainbursts in Creighton and Garson metal mines, Canada, with granite and peridotite as their typical rock types respectively 350 8.3.1 General descriptions of the rock specimens 350 8.3.2 Physical modelling experiments 353 8.3.3 Rock burst proneness analysis 369 8.4 Strainbursts in Carrara underground quarry, Italy, with the marble as its major rock type 371 8.4.1 General introduction of rock bursts in the underground quarry 371 8.4.2 Physical modelling experiments 372 8.4.3 Rock burst proneness analysis 381 References 381 Index 383