0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 理学 > 0701 数学 > 数理统计=Mathematical Statistics(英文版)

相同语种的商品

浏览历史

数理统计=Mathematical Statistics(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
数理统计=Mathematical Statistics(英文版)
  • 书号:9787030670007
    作者:田国梁,蒋学军
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:320
    字数:423000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2021-01-01
  • 所属分类:
  • 定价: ¥99.00元
    售价: ¥78.21元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书是基于作者在香港大学和南方科技大学10余年数理统计教学的经验,同时结合国内其他高校学生和教师的具体情况精心撰写而成的。本书主要内容包括:概率和分布、抽样分布、点估计、区间估计、假设检验、斜零分布的临界区域和值等。本书通过组合传统教材和课堂PPT各自的优点,设置了经纬两条主线,运用块状结构呈现知识点,使得每个知识点自我包含,并采用彩色印刷,方便教与学。另外在介绍重要概念时,注重启发,逻辑顺畅,条理清楚。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Chapter1 Probabilityand Distributions 1
    1.1 Probability 1
    1.1.1 Permutation, combination and binomial coefficients 1
    1.1.2 Sample space 3
    1.1.3 Events 4
    1.1.4 Propertiesof probability 5
    1.2 Conditional Probability 7
    1.3 Bayes Theorem 9
    1.4 ProbabilityDistributions 10
    1.5 Bivariate Distributions 13
    1.5.1 Joint distribution 13
    1.5.2 Marginal and conditional distributions 14
    1.5.3 Independencyoftwo randomvariables 14
    1.6 Expectation,Variance and Moments 16
    1.6.1 Moments 16
    1.6.2 Some probabilityinequalities 18
    1.6.3 Conditional expectation 21
    1.6.4 Compound randomvariables 23
    1.6.5 Calculation of (conditional) probabilityvia (conditional) expectation 23
    1.7 Moment GeneratingFunction 24
    1.8 Beta and Gamma Distributions 27
    1.8.1 Beta distribution 27
    1.8.2 Gamma distribution 29
    1.9 Bivariate Normal Distribution 32
    1.9.1 Univariate normal distribution 32
    1.9.2 Correlation coefficient 34
    1.9.3 Joint density 34
    1.9.4 Stochastic representation of random variables or random vectors 38
    Contents 1.10 Inverse Bayes Formulae 40
    1.10.1 Three inverse Bayes formulae 40
    1.10.2 Understanding the IBF 43
    1.10.3 Two examples 45
    1.11 Categorical Distribution 47
    1.12 Zero-inflatedPoisson Distribution 49
    Exercise 1 53
    Chapter2 Sampling Distributions 57
    2.1 Distribution of the Function of RandomVariables 57
    2.1.1 Cumulative distribution function technique 57
    2.1.2 Transformation technique 62
    2.1.3 Momentgenerating function technique 71
    2.2 Statistics, Sample Mean and SampleVariance 73
    2.2.1 Distributionofthe sample mean 73
    2.2.2 Distributionofthe samplevariance 74
    2.3 The and Distributions 76
    2.3.1 The distribution 76
    2.3.2 The distribution 78
    2.4 Order Statistics 81
    2.4.1 Distributionofa single order statistic 81
    2.4.2 Joint distributionof more order statistics 84
    2.5 Limit Theorems 86
    2.5.1 Convergencyofa sequenceof distribution functions 86
    2.5.2 Convergencein probability 91
    2.5.3 Relationshipof four classesof convergency 92
    2.5.4 Lawof largenumber 94
    2.5.5 Central limit theorem 94
    2.6 Some Challenging Questions 96
    Exercise 2 99
    Chapter3 Point Estimation 102
    3.1 Maximum LikelihoodEstimator 102
    3.1.1 Pointestimator andpointestimate 102
    3.1.2 Joint densityand likelihoodfunction 104
    3.1.3 Maximum likelihoodestimate and maximum likelihood estimator 105
    3.1.4 Theinvariance propertyof MLE 115
    Contents vii 3.2 Moment Estimator 117
    3.3 Bayesian Estimator 121
    3.4 Propertiesof Estimators 125
    3.4.1 Unbiasedness 125
    3.4.2 Efficiency 126
    3.4.3 Sufficiency 138
    3.4.4 Completeness 146
    3.5 Limiting Properties of MLE 151
    3.6 Some Challenging Questions 153
    Exercise 3 156
    Chapter4 Confidence Interval Estimation 162
    4.1 Introduction 162
    4.2 The ConfidenceIntervalof Normal Mean 166
    4.2.1 Thevarianceisknown 166
    4.2.2 Thevarianceis unknown 167
    4.3 The Confidence Interval of the Difference of Two Normal Means 169
    4.4 The ConfidenceInterval of Normal Variance 171
    4.4.1 The mean is known 171
    4.4.2 The meanis unknown 172
    4.5 The Confidence Interval of the Ratio of Two Normal Variances 172
    4.6 Large-Sample ConfidenceIntervals 174
    4.7 The Shortest ConfidenceInterval 178
    Exercise 4 180
    Chapter5 Hypothesis Testing 183
    5.1 Introduction 183
    5.1.1 Several basic notions 184
    5.1.2 TypeIerror andTypeII error 186
    5.1.3 Power function 189
    5.2 The Neyman–Pearson Lemma 191
    5.2.1 Simplenullhypothesisversus simple alternative 192
    5.2.2 Compositehypotheses 199
    5.3 LikelihoodRatioTest 203
    5.3.1 Likelihoodratio statistic 203
    5.3.2 Likelihoodratio test 205
    5.4 Testson Normal Means 211
    5.4.1 One–sample normal test whenvarianceisknown 211
    5.4.2 One–sample test 215
    5.4.3 Two–samplet test 217
    5.5 GoodnessofFitTest 220
    5.5.1 Introduction 220
    5.5.2 Thechi-square testfor totallyknown distribution 222
    5.5.3 The chi-square test for known distribution family with unknown parameters 226
    Exercise 5 230
    Chapter6 Critical Regions and p-values for Skew Null Distributions 233
    6.1 One–sample Chi-square Test on Normal Variance 233
    6.2 Two–sampleF Test on Normal Variances 238
    Appendix A Basic Statistical Distributions 246
    A.Discrete Distributions 246
    A.Continuous Distributions 250
    Appendix B AUnified Expectation Technique 256
    B.Continuous RandomVariables 257
    B.Discrete RandomVariables 277
    Appendix C The Newton–Raphson and Fisher Scoring Algorithms 289
    C.Newton’s Method fo rRoot Finding 289
    C.Newton’s Method for CalculatingMLE 294
    C.The Newton–Raphson Algorithm for High-dimensional Cases 299
    C.The Fisher Scoring Algorithm 304
    List of Figures 307
    List ofTables 309
    List ofAcronyms 310
    List of Symbols 311
    References 315
    Subject Index 317
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证