0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 控制工程 > 智慧设备识别:泛在电力物联网(英文)

相同作者的商品

相同语种的商品

浏览历史

智慧设备识别:泛在电力物联网(英文)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
智慧设备识别:泛在电力物联网(英文)
  • 书号:9787030673794
    作者:刘辉,于程名,吴海平
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:294
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2020-12-01
  • 所属分类:
  • 定价: ¥510.00元
    售价: ¥402.90元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

在物联网迅速发展的当下,利用数据科学实现非侵入式的电气设备辨识对能源节约、机电控制技术发展等具有重要意义。本书详细介绍了设备辨识的智能分类方法,包括机器学习、深度学习、智能聚类、优化模型、集成学习、单标签和多标签识别模型等,并进行了大量的实验仿真对不同的设备辨识方法进行合理的评价,为数据科学技术在非侵入式设备识别中的发展提供了重要的参考。此外,本书还对传统的基于物理和模板匹配的解决方案进行了比较,并分析了智能设备辨识在工业中的巨大应用潜力,对智能设备辨识方法在工业中的应用有较高的参考价值。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 0verview of Ubiquitous Electric Internet of Things (UEIOT) 1
    1.1.1 Features of Ubiquitous Electric Internet of Things 3
    1.1.2 Composition of Ubiquitous Electric Internet of Things 3
    1.1.3 Application Prospect and Value of Ubiquitous Electric Internet of Things 5
    1.2 Key Techniques of UEIOT 8
    1.2.1 Smart Electric Device Recognition 8
    1.2.2 Internet of Things 9
    1.2.3 Big Data Analysis 10
    1.2.4 Cloud Platforms 13
    1.2.5 Computational Intelligence 16
    1.2.6 Smart Model Embedding 19
    1.3Smart Device Recognition in UEIOT 21
    1.3.1 Data Acquisition Module 22
    1.3.2 Event Detection Module 23
    1.3.3 Feature Extraction Module 25
    1.3.4 Load Identification Module 28
    1.4 Different Strategies for Smart Device Recognition 30
    1.4.1Clustering Strategies for Device Recognition 31
    1.4.2 0ptimizing Strategies for Device Recognition 32
    1.4.3 Ensemble Strategies for Device Recognition 33
    1.4.4 Deep Learning Strategies for Device Recognition 34
    1.5 Scope of the Book 36
    References 37
    2 Smart Non-intrusive Device Recognition Based on Physical
    2.1 Introduction 45
    2.2 Device Recognition Method Based on Decision Tree 45
    2.2.1 Evaluation Criteria 45
    2.2.2 Basic Definitions of Physical Features 47
    2.2.3 0riginal Dataset 49
    2.2.4 The Theoretical Basis of Decision Tree 50
    2.3 Device Recognition Method Based on Template Matching Method 55
    2.3.1 The Basic Content of the Template Matching Method 55
    2.3.2 Device Recognition Based on KNN Algorithm 56
    2.3.3 Device Recognition Based on DTW Algorithm 60
    2.4 Device Recognition Method Based On Current Decomposition 62
    2.4.1 Introduction of the Current Decomposition Method 62
    2.4.2 Physical Features of Current Decomposition 63
    2.5 Experiment Analysis 65
    2.5.1 Common Optimization Algorithms 65
    2.5.2 Classification Results 67
    2.5.3 Summary 71
    References 73
    3 Smart Non-intrusive Device Recognition Based on Intelligent Single-Label Classification Methods 81
    3.1 Introduction 81
    3.2 Device Recognition Method Based on Support Vector Machine 82
    3.2.1 Feature Extraction 82
    3.2.2 Steps of the Model Based on SVM 86
    3.2.3 Performance Evaluation 87
    3.3 Device Recognition Method Based on Extreme Learning Machine 90
    3.3.1 Data Process and Feature Extraction 90
    3.3.2 Steps of the Model Based on Extreme Learning Machine 91
    3.3.3 Performance Evaluation 93
    3.4 Device Recognition Method Based on Artificial Neural Network 96
    3.4.1 Data Process and Feature Extraction 96
    3.4.2 Steps of the Multi-layer Perceptron Based Model 97
    3.4.3 Performance Evaluation 98
    3.5 Experiment Analysis 101
    References 104
    4 Smart Non-intrusive Device Recognition Based on Intelligent Multi-Iabel Classification Methods 107
    4.1 Introduction 107
    4.1.1 Background 107
    4.1.2Dataset Used in the Chapter 108
    4.2 Device Recognition Method Based on Ranking Support Vector Machine 108
    4.2.1 Model Framework 109
    4.2.2 Data Labeling 110
    4.2.3 Feature Extraction and Reconstruction 113
    4.2.4 The Basic Theory of the Ranking Support Vector Machine 117
    4.2.5 Multi-Iabel Classification Evaluation Indices 121
    4.2.6 Evaluation of Ranking SVM in Terms of Multi-label Device Recognition 124
    4.3 Device Recognition Method Based on Multi-label K-Nearest Neighbors Algorithm 130
    4.3.1 Model Framework 131
    4.3.2 Data Preprocessing 131
    4.3.3 The Basic Theory of Multi-label K-Nearest Neighbors 132
    4.3.4 Evaluation of MLKNN in Terms of Multi-label Device Recognition 134
    4.4 Device Recognition Method Based on Multi-label Neural
    4.4.1 Model Framework 137
    4.4.2 Preprocessing of the Raw Data 137
    4.4.3 The Basic Theory of Backpropagation Multi-label Learning 138
    4.4.4 Evaluation of BPMLL in Terms of Multi-Iabel Device Recognition 138
    4.5 Experiment Analysis 139
    References 140
    5 Smart Non-intrusive Device Recognition Based on Intelligent Clustering Methods 143
    5.1 Introduction 143
    5.1.1 Background 143
    5.1.2 Cluster Validity Index 145
    5.1.3 Data Preprocessing 147
    5.2 Fast Global K-Means Clustering-Based Device Recognition Method 150
    5.2.1 The Theoretical Basis of K-Means, GKM and FGKM 150
    5.2.2 Steps of Modeling 154
    5.2.3 Clustering Results 154
    5.3 DBSCAN Based Device Recognition Method 158
    5.3.1 The Theoretical Basis of DBSCAN 158
    5.3.2 Steps of Modeling 160
    5.3.3 Clustering Results 160
    5.4 Experiment Analysis 164
    References 166
    6 Smart Non-intrusive Device Recognition Based on Intelligent Optimization Methods 169
    6.1 Introduction 169
    6.1.1 Background 169
    6.1.2 Steady-State Current Decomposition 170
    6.1.3 Data Description 172
    6.1.4 Feature Extraction 174
    6.1.5 0bjective Function 174
    6.1.6 Evaluation Indexes 175
    6.2 NSGA-II Based Device Recognition Method 176
    6.2.1 The Theoretical Basis of NSGA-II 176
    6.2.2 Model Framework 177
    6.2.3 Evaluation of NSGA-II Model 178
    6.3 Multi-object Particle Swarm Optimization Based Device Recognition Method 182
    6.3.1 The Theoretical Basis of Multi-object Particle Swarm Optimization 182
    6.3.2 Model Framework 183
    6.3.3 Evaluation of MOPSO Model 184
    6.4 Multi-object Grey Wolf Optimization Based Device Recognition Method 186
    6.4.1 The Theoretical Basis of Multi-object Grey Wolf Optimization 186
    6.4.2 Model Framework 187
    6.4.3 Evaluation of MOGWO Model 187
    6.5 Experiment Analysis 190
    References 191
    7 Smart Non-intrusive Device Recognition Based on Ensemble Methods 193
    7.1 Introduction 193
    7.1.1 Background 193
    7.1.2 Data Description 194
    7.1.3 Feature Extraction 197
    7.2 Ensemble Device Recognition Method Based on Optimized Weighting Strategy 198
    7.2.1 Theoretical Basis of Base Classifiers 198
    7.2.2 Theoretical Basis of Optimized Weighting Strategy 199
    7.2.3 Model Framework 201
    7.2.4 Analysis of Weighting Ensemble Device Recognition
    7.3 Ensemble Device Recognition Method Based on Boosting Strategy 209
    7.3.1 Theoretical Basis of Boosting Strategy 209
    7.3.2 Model Framework 214
    7.3.3 Analysis of Boosting Ensemble Device Recognition Model 214
    7.4 Experiment Analysis 221
    7.4.1 Comparative Analysis of Classification Performance 221
    7.4.2 Conclusion 226
    References 226
    8 Smart Non-intrusive Device Recognition Based on Deep Learning Methods 229
    8.1 Introduction 229
    8.2 Deep Learning Device Recognition Method Based on Load Sequence Input 230
    8.2.1 Non-intrusive Device Identification Based on RNN Network 231
    8.2.2 Non-intrusive Device Identification Based on LSTM Network 234
    8.2.3 Non-intrusive Load Identification Based on GRU Network 238
    8.3 Deep Learning Device Recognition Method Based on Graph Processing 240
    8.3.1 Data Conversion 240
    8.3.2 Non-intrusive Device Identification Based on CNN 241
    8.3.3 Non-intrusive Device Identification Based on AlexNet 244
    8.3.4 Non-intrusive Device Identification Based on GoogLeNet 248
    8.4 Experiment Analysis 251
    8.4.1 Experimental Analysis of the Load Sequence-Based Device Recognition 251
    8.4.2 Experimental Analysis of the Graph Processing Based Device Recognition 253
    References 255
    9Potential Applications of Smart Device Recognition in Industry 259
    9.1 Introduction 259
    9.2 Electric and Energy Applications 260
    9.2.1 0verview of Electricity and Energy 260
    9.2.2 Home Energy Management 264
    9.2.3 Fault Discrimination of User's Electric Line 268
    9.3 Complex Electromechanical System Applications 272
    9.3.1 0verview of Complex Electromechanical System Problem Analysis and Solution Research 273
    9.3.2 Motor Fault Detection and Motor Energy Management 274
    9.3.3 Ship Electromechanical System 281
    9.4 Environmental Pollution Monitoring Applications 283
    9.4.1 0verview of Global Environmental Pollution and Environmental Monitoring 283
    9.4.2 Non-intrusive Spatial and Temporal Monitoring of Air Quality 284
    9.4.3 Intelligent Identification of Environmental Pollution Sources in Industrial Parks 285
    9.5 0ther Applications 287
    9.5.1 Substations and Distributed Energy Sources 287
    9.5.2 Monitoring of Common Problems in Industrial Production 289
    9.5.3 NILM Health Services for the Elderly 289
    9.5.4 Speech Quality Measurement 290
    References 291
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证