本书主要研究数学分析中的微分与积分及相关的一些问题。内容包括一元函数微分学、一元函数微分法的应用、一元函数积分学和多元函数及其微分学等。本书在内容的安排上,深入浅出,表达清楚,可读性和系统性强。书中主要通过一些疑难解析和大量的典型例题来解析数学分析的内容和解题方法,并提供了一定数量的进阶练习题,便于教师在习题课中使用,也有利于学生在学习数学分析时练习提高。
样章试读
目录
- 目录
“数学分析立体化教材”序言
第二版说明
第一版前言
第1章 一元函数微分学 1
1.1 疑难解析 1
1.2 典型例题 4
1.2.1 微分与导数的概念 4
1.2.2 微分与导数的计算 6
1.2.3 综合举例 18
1.3 进阶练习题 24
第2章 一元函数微分法的应用 26
2.1 疑难解析 26
2.2 典型例题 31
2.2.1 微分中值定理及其应用 31
2.2.2 Taylor公式与不定式极限 36
2.2.3 利用导数研究函数的性态 45
2.2.4 利用导数证明不等式 50
2.2.5 综合举例 56
2.3 进阶练习题 65
第3章 一元函数积分学 68
3.1 疑难解析 68
3.2 典型例题 81
3.2.1 不定积分 81
3.2.2 定积分的概念与性质 91
3.2.3 微积分基本定理及定积分的计算.93
3.2.4 定积分的可积性判别 97
3.2.5 积分中值定理 100
3.2.6 定积分在几何上的应用 107
3.3 进阶练习题 111
第4章 多元函数微分学 113
4.1 疑难解析 113
4.2 典型例题 117
4.2.1 偏导数与全微分的概念 117
4.2.2 利用偏导数运算法则求偏导数 119
4.2.3 高阶偏导数的计算 120
4.2.4 综合举例 123
4.3 进阶练习题 133
第5章 多元函数微分法的应用 136
5.1 疑难解析 136
5.2 典型例题 140
5.2.1 方向导数与多元函数Taylor公式 140
5.2.2 一般极值和条件极值 143
5.2.3 隐函数(组)定理及其应用 146
5.2.4 几何应用 151
5.2.5 综合举例 152
5.3 进阶练习题 160
第6章 重积分 162
6.1 疑难解析 162
6.2 典型例题 172
6.2.1 二重积分的概念 172
6.2.2 直角坐标系下二重积分的计算 175
6.2.3 二重积分的变量变换 182
6.2.4 三重积分 186
6.2.5 综合举例 191
6.3 进阶练习题 196
第7章 曲线积分与曲面积分.198
7.1 疑难解析 198
7.2 典型例题 204
7.2.1 第一型曲线积分 204
7.2.2 第一型曲面积分 209
7.2.3 第二型曲线积分 216
7.2.4 第二型曲面积分 222
7.2.5 综合举例 231
7.3 进阶练习题 238
第8章 各种积分之间的关系.240
8.1 疑难解析 240
8.2 典型例题 242
8.2.1 Green公式 242
8.2.2 Gauss公式 246
8.2.3 Stokes公式.248
8.2.4 曲线积分与路径无关的条件 251
8.2.5 综合举例 253
8.3 进阶练习题 261
进阶练习题的参考答案或提示 263
参考文献 270
附录 2011,2012,2020年华南师范大学数学分析考研真题 271