0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 运筹学/控制论 > 非线性优化理论引论

相同语种的商品

浏览历史

非线性优化理论引论


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
非线性优化理论引论
  • 书号:9787030706591
    作者:张立卫,王嘉妮
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:228
    字数:302000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2022-01-01
  • 所属分类:
  • 定价: ¥118.00元
    售价: ¥93.22元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书系统介绍非线性优化的基础理论,内容包括非线性规划、非线性二阶锥优化、非线性半定规划的最优性理论和经典的稳定性分析理论,稳定性分析主要包括Jacobian 唯一性条件下的稳定性分析和Karush-Kuhn-Tucker 系统的强正则性的刻画。 为了刻画非线性二阶锥优化和非线性半定规划的理论,以较短的篇幅介绍了对偶理论、锥约束优化的最优性理论与经典的稳定性结果,还介绍了Lipschitz 连续优化和互补约束优化问题的最优性必要条件。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    第1章等式约束优化问题 1
    1.1等式约束优化问题的最优性条件 1
    1.2等式约束优化问题的稳定性 7
    1.33 习题 10
    第2章抽象集合上的极小化问题 13
    2.1凸集上的极小化问题 13
    2.2非线性凸优化问题 14
    2.3抽象集合极小化的基本定理 16
    2.4习题 17
    第3章对偶理论 19
    3.1共轭对偶 19
    3.1.1共轭函数 19
    3.1.2共轭对偶问题 22
    3.2Lagrange 对偶 26
    3.3对偶理论的应用 27
    3.4非线性凸规划的增广Lagrange方法* 32
    3.5习题 36
    第4章非线性规划 37
    4.1线性规划的对偶定理 37
    4.2非线性规划最优性条件 38
    4.2.1可行集的切集与外二阶切集 39
    4.2.2一阶最优性条件 42
    4.2.3二阶必要性与充分性最优条件 46
    4.3非线性规划的稳定性 51
    4.3.1Jacobian 唯一性条件 51
    4.3.2(NLP)问题的KKT系统的强正则性 54
    4.4网络流问题* 59
    4.4.1凸的可分离网络流问題 62
    4.4.2带有边约束的凸网络问题 63
    4.5g 题 64
    第5章Lipschitz连续与互补约束优化问题 66
    5.1广义方向导数与正则切锥 66
    5.2实对称矩阵谱算子的广义Jacobian* 70
    5.2.1对称矩阵谱算子 70
    5.2.2对称矩阵谱算子的Frechet微分 70
    5.2.3对称矩阵谱算子的Clarke广义Jacobian 72
    5.3抽象集合上Lipschitz连续优化问题 73
    5.4非线性Lipschitz连续优化问题 76
    5.5均衡约束优化问题* 78
    5.5.1解的存在性 80
    5.5.2最优性条件 80
    5.6互补约束优化问题 84
    5.7半定锥互补约束优化问题* 91
    5.8习题97
    第6章锥约束优化问题 99
    6.1可行集的变分几何 99
    6.1.1度量正则性 99
    6.1.2的切锥 104
    6.1.3的二阶切集 104
    6.1.4重要例子 105
    6.2—阶最优性条件 109
    6.3二阶必要性条件 113
    6.4二阶“无间隙”最优性条件 116
    6.5锥约束优化问题的稳定性分析 120
    6.5.1C2-锥简约 121
    6.5.2稳定性的具体结论 123
    6.6习题 129
    第7章二阶锥约束优化 131
    7.1二阶锥简介 131
    7.2二阶锥的投影映射 132
    7.3二阶锥约束优化的最优性条件 134
    7.3.1(SOCP)问题 134
    7.3.2一阶必要性条件 135
    7.3.3二阶最优性条件 138
    7.4二阶锥约束优化的稳定性分析 140
    7.4.1Jacobian 唯一性条件 140
    7.4.2强二阶充分性最优条件 146
    7.4.3(SOCP)问题的KKT系统的强正则性 147
    7.5二阶锥优化模型的应用* 155
    第8章非线性半定规划 162
    8.1非线性半定规划的最优性条件 162
    8.1.1一阶最优性条件 162
    8.1.2二阶最优性条件 165
    8.2非线性半定规划的稳定性分析 168
    8.2.1线性-二次函数 168
    8.2.2强二阶充分性条件 170
    8.2.3Jacobian 唯一性条件 172
    8.2.4(SDP)问题的KKT系统的强正则性 177
    8.3最优协方差阵的牛顿法* 183
    8.4习题 189
    第9章附录:基础知识 191
    9.1凸分析基础 191
    9.2变分几何 194
    9.3方向导数 203
    9.4投影算子的Clarke广义次梯度 206
    9.5Lipschitz 性质 211
    9.6优化问题的解的定义 214
    9.7广义方程的强正则性 218
    参考文献 224
    索引226
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证