0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 概率论/数理统计 > 分层分位模拟——理论、方法及以应用(英文版)

相同作者的商品

相同语种的商品

浏览历史

分层分位模拟——理论、方法及以应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
分层分位模拟——理论、方法及以应用(英文版)
  • 书号:9787030699039
    作者:田茂再
  • 外文书名:
    Hierarchical Quantile Modeling Theory, Methodology and Applications
  • 装帧:平装
    开本:B5
  • 页数:735
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2022-01-01
  • 所属分类:
  • 定价: ¥398.00元
    售价: ¥314.42元
  • 图书介质:
    纸质书 按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

随着科学技术的迅猛发展,具有复杂分层结构的数据在现实生活中很普遍。能完全剖析这类数据,发觉该类数据表象下的潜在规律性对于统计学等科研领域很有意义。本书致力于介绍复杂分层数据分析前沿知识,侧重于分层分位回归理论、方法及其应用研究。内容主要包括三大块:分层数据建模、分位回归与分层-分位回归。主要涉及到线性分层分位回归模拟、非参数分层分位回归模拟、适应性分层分位回归模拟、可加性分层分位回归模拟、变系数分层分位回归模拟、单指数分层分位回归模拟、分层分位自回归模拟、复合分层分位回归模拟、高维分层分位回归模拟、分层分位回归模拟、分层样条分位回归模拟、分层线性分位回归模拟、分层半参数分位回归模拟、复合分层线性分位回归模拟、复合分层半参数分位回归模拟等。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    PartI QUANTILE REGRESSION MODELLING
    Chapter1 INEAR QUANTILE REGRESSION 3
    1.1 Education: Mathematical Achievements 3
    1.1.1 Introduction 3
    1.1.2 Data5
    1.1.3 Estimation Results 7
    1.1.4 Confidence Intervals and Related Interpretations 11
    1.1.5 Conclusion 16
    1.2 Large Sample Properties 16
    1.3 Bibliographic Notes 19
    Chapter2 NONPARAMETRIC QUANTILE REGRESSION 20
    2.1 Robust Local Approximation Method 20
    2.1.1 Introduction 20
    2.1.2 Consistency 22
    2.1.3 Rate of Convergence 26
    2.1.4 Asymptotic Distribution 33
    2.1.5 Optimization of Estimate 37
    2.1.6 Bibliographic Notes 39
    2.2 Nonparametric Function Estimation 40
    2.2.1 Introduction 40
    2.2.2 Asymptotic Properties 42
    2.2.3 Applications 52
    2.2.4 Bibliographic Notes 54
    2.3 Local Linear Quantile Regression 55
    2.3.1 Introduction 55
    2.3.2 Local Linear Check Function Minimization 58
    2.3.3 Local Linear Double-Kernel Smoothing 62
    2.3.4 Bibliographic Notes 68
    Chapter3 ADAPTIVE QUANTILE REGRESSION 69
    3.1 Locally Constant Adaptive Quantile Regression 69
    3.1.1 Introduction 69
    3.1.2 Adaptive Estimation 72
    3.1.3 Implementation 73
    3.1.4 Theoretical Properties 75
    3.1.5 Bibliographic Notes 82
    3.2 Locally Linear Adaptive Quantile Regression 82
    3.2.1 Introduction 82
    3.2.2 Local Linear Adaptive Estimation 84
    3.2.3 Algorithm 85
    3.2.4 Theoretical Properties 86
    3.2.5 Bibliographic Notes 89
    Chapter4 ADAPTIVE QUANTILES REGRESSION 91
    4.1 Additive Conditional Quantiles with High-Dimensional Covariates 91
    4.1.1 Introduction 91
    4.1.2 Methodology 93
    4.1.3 Asymptotic Behavior 98
    4.1.4 Concluding Remarks 105
    4.1.5 Bibliographic Notes 105
    4.2 Nonparametric Estimation 105
    4.2.1 Introduction 106
    4.2.2 Estimator 108
    4.2.3 Asymptotic Results 110
    4.2.4 Conclusions 126
    4.2.5 Bibliographic Notes 126
    Chapter5 QUANTILE REGRESSION BASED ON VARYINGCOEFFICIENT MODELS 127
    5.1 Adaptive Quantile Regression Based on Varying-coefficient Models 127
    5.1.1 Introduction 127
    5.1.2 Adaptive Estimation 129
    5.1.3 Theoretical Properties 135
    5.1.4 Conclusion 142
    5.1.5 Bibliographic Notes 143
    5.2 Varying-coefficient Models with Heteroscedasticity 143
    5.2.1 Introduction 144
    5.2.2 Local Linear CQR-AQR Estimation 146
    5.2.3 Local Quadratic CQR-AQR Estimation 156
    5.2.4 Bandwidth Selection 157
    5.2.5 Hypothesis Testing 158
    5.2.6 Local m-polynomial CQR-AQR Estimation 159
    5.2.7 Discussion 160
    5.2.8 Bibliographic Notes 161
    Chapter6 SINGLE-INDEX QUANTILE REGRESSION 163
    6.1 Single Index Models 163
    6.1.1 Introduction 163
    6.1.2 The Model and Estimation 165
    6.1.3 Large Sample Properties 168
    6.1.4 Conclusions 178
    6.1.5 Bibliographic Notes 178
    6.2 CQR for Varying Coefficient Single-index Models 179
    6.2.1 Introduction 179
    6.2.2 Quantile Regression 181
    6.2.3 Composite Quantile Regression 184
    6.2.4 Discussion 194
    6.2.5 Bibliographic Notes 194
    Chapter7 QUANTILE AUTOREGRESSION 196
    7.1 Introduction 196
    7.2 The Model 197
    7.2.1 Description of The Model 197
    7.2.2 Properties 199
    7.3 Estimation 203
    7.4 Quantitle Monotonicity 208
    7.5 Inference 209
    7.5.1 Wald Process and Related Tests 209
    7.5.2 Testing for Asymmetric Dynamics 210
    7.5.3 Bibliographic Notes 212
    Chapter8 COMPOSITE QUANTILE REGRESSION 213
    8.1 Composite Quantile and Model Selection 213
    8.1.1 Introduction and Motivation 213
    8.1.2 Composite Quantile Regression 216
    8.1.3 Asymptotic Relative Efficiency 220
    8.1.4 The CQR-oracular Estimator 225
    8.1.5 Concluding Remarks 228
    8.1.6 Bibliographic Notes 229
    8.2 Local Quantile Regression 229
    8.2.1 Introduction 229
    8.2.2 Estimation of Regression Function 231
    8.2.3 Estimation of Derivative 235
    8.2.4 Local p-polynomial CQR Smoothing 238
    8.2.5 Discussion 246
    8.2.6 Bibliographic Notes 246
    Chapte9 HIGH DIMENSIONAL QUANTILE REGRESSION 248
    9.1 Diagnostic for Ultra High Heterogeneity 248
    9.1.1 Introduction 248
    9.1.2 Nonconvex Penalized Quantile Regression 251
    9.1.3 Discussion 262
    9.1.4 Bibliographic Notes 263
    9.2 Bayesian Quantile Regression 264
    9.2.1 Introduction 264
    9.2.2 Asymmetric Laplace Distribution 265
    9.2.3 Bayesian Approach 266
    9.2.4 Improper Priors for Parameters 267
    9.2.5 Discussion 269
    9.2.6 Bibliographic Notes 270
    PartII HIERARCHICAL MODELING
    Chapter10 HIERARCHICAL LINEAR MODELS 273
    10.1 Bayes Estimates 273
    10.1.1 Introduction 273
    10.1.2 Exchangeability 274
    10.1.3 General Bayesian Linear Model 277
    10.1.4 Estimation 281
    10.1.5 Bibliographic Notes 283
    10.2 Maximum Likelihood from Incomplete Data 283
    10.2.1 Introduction 283
    10.2.2 Definitions of the EM Algorithm 286
    10.2.3 General Properties 290
    10.2.4 Bibliographic Notes 296
    10.3 EM-algorithm 296
    10.3.1 Introduction 297
    10.3.2 Covariance Components Models 298
    10.3.3 Estimation of Variances and Covariances 301
    10.3.4 Computational Notes 303
    10.3.5 Bibliographic Notes 309
    10.4 Iterative Generalized Least Squares 310
    10.4.1 Introduction 310
    10.4.2 Basic Model 310
    10.4.3 Estimation 312
    10.4.4 Random Coefficients 314
    10.4.5 Constraints among Parameters 316
    10.4.6 Further Applications 316
    10.4.7 Errors of Measurement 317
    10.4.8 Discussion 318
    10.4.9 Appendix 1 319
    10.4.10  Appendix 2 320
    10.4.11 Appendix 3 322
    10.4.12 Bibliographic Notes 323
    10.5 Scoring Algorithm 324
    10.5.1 Introduction 324
    10.5.2 The Model 325
    10.5.3 The Log Likelihood Function 328
    10.5.4 Two Levels of Nesting 329
    10.5.5 An EM Algorithm 333
    10.5.6 More Than Two Levels of Nesting 334
    10.5.7 Bibliographic Notes 336
    10.6 Newton-Raphson Algorithm 337
    10.6.1 Introduction 338
    10.6.2 Computational Methods 340
    10.6.3 Derivatives 341
    10.6.4 Matrix Decompositions 345
    10.6.5 Estimation of σ and D 347
    10.6.6 Discussion and Extension 349
    10.6.7 Bibliographic Notes 353
    Chapter11 HIERARCHICAL GENERALIZED LINEAR MODELS 354
    11.1 Hierarchical Likelihood 354
    11.1.1 Introduction 354
    11.1.2 Hierarchical Generalized Linear Models 355
    11.1.3 Properties of Maximum h-likelihood Estimates 363
    11.1.4 Estimation Procedures 368
    11.1.5 Genaralizations 372
    11.1.6 Discussion 381
    11.1.7 Bibliographic Notes 382
    11.2.1 Introduction 383
    11.2.2 Random Effects GLM 385
    11.2.3 Bayesian Formulation  386
    11.2.4 Gibbs Sampler 387
    11.2.5 Conditional Distributions 388
    11.2.6 Discussion  392
    11.2.7 Bibliographic Notes 392
    Chapter12 HIERARCHICAL NONLINEAR MODELS 394
    12.1 Conditional Second-Order Generalized Estimating Equations 394
    12.1.1 Introduction 394
    12.1.2 The Model 396
    12.1.3 Estimation 397
    12.1.4 Conditional Variance-Covariance Structures 399
    12.1.5 Conditionals  401
    12.1.6 Asymptotic Properties 403
    12.1.7 Discussion 404
    12.1.8 Bibliographic Notes 406
    12.2 A Hybrid Estimator 407
    12.2.1 Introduction 407
    12.2.2 Estimation 408
    12.2.3 A Hybrid Estimator 411
    12.2.4 Asymptotic Theory 414
    12.2.5 Extension to Hierarchical GLMs 424
    12.2.6 Discussion 425
    12.2.7 Bibliographic Notes 426
    Chapter13 HIERARCHICAL SEMIPARAMETRIC MODELS 429
    13.1 Hierarchical Semiparametric Nonlinear Mixed-Effects Models 429
    13.1.1 Introduction 429
    13.1.2 SNMEM 432
    13.1.3 Estimation 435
    13.1.4 Computational Aspects 438
    13.1.5 Inferences 441
    13.1.6 Conclusions 442
    13.1.7 Bibliographic Notes 443
    13.2 Simultaneously Modeling for Mean-Covariance 444
    13.2.1 Background 445
    13.2.2 Then Models and Estimation Methods 446
    13.2.3  Asymptotic Properties 450
    13.2.4 Discussion 458
    13.2.5 Bibliographic Notes 459
    PartIII HIERARCHICAL QUANTILE MODELING
    Chapter14 HIERARCHICAL SPLINE MODELS 463
    14.1 Introduction 464
    14.2 Nonparametric Estimation 465
    14.3 WALD Tests for Regression Quantile Models 467
    14.4 Conclusions 470
    14.5 Bibliographic Notes 470
    Chapter15 HIERARCHIAL LINEAR QUANTILE MODELING 473
    15.1 Introduction 473
    15.2 The Hierarchical Quantile Regression Model 474
    15.3 EQ Algorithm 475
    15.4 Asymptotic Properties 477
    15.5 Bibliographic Notes 483
    Chapter16 HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING 485
    16.1 Introduction  485
    16.2 The Models and Estimation 487
    16.3 Asymptotic Results 492
    16.4 Conclusion 499
    16.5 Bibliographic Notes 499
    Chapter17 COMPOSITE HIERARCHICAL LINEAR QUANTILE MODELING 501
    17.1 Introduction  501
    17.2 The Models 502
    17.3 Estimation 504
    17.4 Asymptotic Properties 506
    17.4.1 The Error Distribution is Normal 506
    17.4.2 The Error Distribution is Non-normal 509
    17.5 Discussion 511
    17.6 Bibliographic Notes 511
    Chapter18 COMPOSITE HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING 513
    18.1 Introduction 513
    18.2 The Models 515
    18.3 Estimation and Algorithm 516
    18.4 Asymptotic Properties 517
    18.5 Discussion 522
    18.6 Bibliographic Notes 523
    PartIV LARGE SCALE APPLICATIONS TO REAL DATA
    Chapter19 APPLICATIONS OF QUANTILE REGRESSION 527
    19.1 Introduction 527
    19.1.1 Health and Medicine 527
    19.1.2 Environment 535
    19.1.3 Economics 535
    19.1.4 Finance 540
    19.2 Applications to Mathematical Education Based on LQR 540
    19.2.1 Background 541
    19.2.2 Description of Data 542
    19.2.3 Methodology 543
    19.2.4 Results 544
    19.2.5 Conclusion 556
    19.3 Application of Local LQR 556
    19.3.1 Triceps Skinfold 557
    19.3.2 Immunoglobulin 558
    19.4 The Widening Gap between the Rich and the Poor 560
    19.5 Boston Housing Analysis Using AQR 561
    19.5.1 Boston Housing 561
    19.5.2 Empirical results 564
    19.6 The Analysis of Japanese Firms in the Chemical Industry by Employing AQR 565
    19.7 The Analysis of Norwegian Air Pollution Bying Quantile Varying-coefficient Regression 568
    19.8 Empirical Application to Air Pollution Based HVCMs 570
    19.9 Boston Pricing by Single-index Quantile Regression 571
    19.10 Boston Pricing Using VCSIM 575
    19.11 Two Economic Time Series Basedbon the Quantile Autoregression 576
    19.11.1 Unemployment Rate 577
    19.11.2 Retail Gasoline Price Dynamics 578
    19.12 The UK Family Expenditure Using Local CQR Methodology 579
    19.13 Analysis of Microarray Dataset  581
    19.14 Analysis of Two Data Sets Through Bayesian Quantile Autoregression 585
    19.14.1 Immunoglobulin-G 585
    19.14.2 Stack Loss 586
    Chapter20 APPLICATIONS OF HIERARCHICAL REGRESSION MODELS 588
    20.1 Two-factor Experimental Designs and Multiple Regression 588
    20.1.1 Experimental Designs and Exchangeability 588
    20.1.2 Examples with Unknown Covariance Structure 593
    20.2 Examples of EM Algorithms 599
    20.2.1 Missing Data 599
    20.2.2 Grouping, Censoring and Truncation 602
    20.2.3 Finite Mixtures 605
    20.2.4 Variance Components 607
    20.2.5 Hyperparameter Estimation 609
    20.2.6 Iteratively Reweighted Least Squares 610
    20.2.7 Factor Analysis 612
    20.3 Law Schools, Field Mice and Professional Football Teams 613
    20.4 A Longitudinal Study of Educational Achievements 624
    20.5 Ovarian Follicle and Calcium Supplement 627
    20.6 Applications of Hierarchical Generalized Linear Models 630
    20.6.1 Procedures for Analysis 630
    20.6.2 Poisson-Gamma Model and Pump Failure Data 630
    20.6.3 Binomial-Beta Model and Seed Germination Data 632
    20.6.4 Gamma-Inverse Gamma Model and the Cake Baking Data 634
    20.6.5 Poisson-Gamma Model and Epileptics Data 634
    20.6.6 Binomial-Beta Model and Salamander Data 638
    20.7 Infectious Disease Data of Indonesia 642
    20.8 Epileptic Seizure 646
    20.9 Eight Guinea Pigs 648
    20.10 Canadian Temperature 653
    20.11 CD4 Cell 656
    Chapter21 APPLICATIONS OF HIERARCHICAL QUANTILE REGRESSION MODELING 661
    21.1 Household Electricity Demands 661
    21.1.1 The Applications of Hierarchical Models to Household Demand 661
    21.1.2 Commonwealth Edison Company 665
    21.1.3 Stage II Results 666
    21.2 Mathematics Education in Canada 673
    21.3 The Mean Pixel Intensity of Lymphnodes in the CT Scan 679
    21.4 Applications of Composite Hierachical Linear Quantile Regression 685
    21.5 Applications of Semi-HCQR Method to Partial HIV Monitoring Data 688
    Bibliographic Notes 692
    Bibliography 693
    Index 734
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证