0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 光学 > 类脑计算

相同语种的商品

浏览历史

类脑计算


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
类脑计算
  • 书号:9787030718938
    作者:危辉
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:849
    字数:1100000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2022-07-01
  • 所属分类:
  • 定价: ¥288.00元
    售价: ¥227.52元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书从多学科交叉的角度将神经生物学在视觉神经机制、神经元信号加工与编码方面的解剖学与电生理学发现和认知心理学关于知觉信息加工、工作记忆等方面的实验结论,与人工智能中关于图像理解与人工神经元网络模型结合起来,设计能够模拟视网膜、初级视皮层和高级视皮层部分图像信息加工功能,以及模拟神经编码微回路的数据结构和层次网络计算模型,并用计算机视觉或图像理解领域常用的测试数据集来验证这些网络计算模型的效能。这些深入考虑了神经生物学基本机制与约束的计算模型,一方面能够在工程方面为图像理解或信息保持提供不同于传统方法的新解决方案,另一方面也为神经科学研究提供了探索神经信号加工内在机理的仿真平台。这些以信息加工神经生理机制和认知心理机制为基本出发点的计算建模研究为人工智能关于表征、神经计算新模型、基于结构的学习模型、不同于经典图灵机模型的新计算架构开拓了思路。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录 
    前言 
    第1章 什么是类脑计算 1 
    1.1 类脑计算的非正式说明 1 
    1.2 类脑计算助力工程问题 2 
    1.3 类脑计算助力神经科学研究 6 
    1.4 类脑计算与人工智能 10 
    参考文献 11 
    第2章 基于多尺度感受野的警觉保持计算模型 12 
    2.1 人类视觉系统 12 
    2.1.1 眼睛的构造 12 
    2.1.2 视网膜的结构与功能 13 
    2.1.3 视网膜|外膝体|视皮层通路的定量分析 16 
    2.1.4 视觉的空间辨别 19 
    2.1.5 视神经通路 20 
    2.1.6 感受野的研究 23 
    2.1.7 视觉信息处理机制给计算机视觉的启示 26 
    2.2 DOG模型 27 
    2.2.1 DOG模型概述 27 
    2.2.2 on事件与off事件的定义及检测规则 28 
    2.2.3 参数选取及阈值界定 31 
    2.3 警觉保持计算模型 38 
    2.3.1 逐级加工的层次网络模型 38 
    2.3.2 多尺度感受野的设计算法 40 
    2.3.3 拟神经节单元生成算法 42 
    2.3.4 感受野覆盖特性研究 42 
    2.3.5 警觉保持算法 46 
    2.4 仿真实验 47 
    2.4.1 实验参数的设定 47 
    2.4.2 实验结果 49 
    参考文献 54
    第3章 生物视网膜早期机制的模拟与性能平衡 55 
    3.1 生物视网膜结构模型 55 
    3.1.1 眼睛的结构与视觉成像原理 55 
    3.1.2 生物视网膜层次网络结构 56 
    3.1.3 生物视网膜信息处理的概要性流程 58 
    3.1.4 生物视网膜信息处理过程中值得研究的几个重要问题 59 
    3.2 早期视觉模型分类与分析 60 
    3.2.1 早期视觉模型分类 60 
    3.2.2 “黑匣子”算法模型 61 
    3.2.3 简单生理拟合模型 61 
    3.2.4 复杂生理拟合模型 63 
    3.3 早期视觉机制的模拟 65 
    3.3.1 模拟视网膜结构的计算模型 65 
    3.3.2 视网膜神经节细胞感受野分布模型 70 
    3.3.3 光感受器细胞的算法模型 72 
    3.3.4 神经节细胞的算法模型 74 
    3.4 计算模型的实现与实验分析 75 
    3.4.1 模型的实现 75 
    3.4.2 真实图片实验结果与分析 75 
    参考文献 85 
    第4章 视网膜仿真及其感知效能分析 87 
    4.1 视网膜各层结构在信息处理中的作用 87 
    4.2 视网膜中的垂直并行通路结构简介 88 
    4.2.1 视锥细胞通路与视杆细胞通路 88 
    4.2.2 ON与OFF通路 88 
    4.2.3 颜色、亮度、运动等功能性并行通路 89 
    4.2.4 视网膜各并行通路在信息处理中的作用 90 
    4.3 视网膜模型设计与实现 91 
    4.3.1 视网膜模型的整体模式图 91 
    4.3.2 光感受器层的模拟 92 
    4.3.3 水平细胞层和双极细胞层的模拟 98 
    4.3.4 无长足细胞层的模拟 101 
    4.3.5 神经节细胞层的模拟 102 
    4.4 实验系统设计与分析 104 
    4.4.1 视网膜网络模型的基本结构验证实验 104
    4.4.2 视网膜网络模型的刺激探测效果及物体表征效果实验 109 
    4.4.3 视网膜神经节细胞感受野对视网膜性能的影响分析 115 
    参考文献 117 
    第5章 基于视网膜的图像局部朝向刺激表征模型 119 
    5.1 视觉计算模型 119 
    5.1.1 数字图像的表征 120 
    5.1.2 “像素无关”的采样策略 122 
    5.1.3 非均匀密度分布细胞的生成 123 
    5.1.4 视觉计算模型的逐层构建 125 
    5.1.5 视觉计算模型的平行通路 130 
    5.1.6 图像表征与重构 134 
    5.1.7 本节小结 134 
    5.2 视觉计算模型的图像表征实验 135 
    5.2.1 图像复杂度的概念 135 
    5.2.2 边界直线段的检测实验 137 
    5.2.3 图像的\解构“与\重构”实验 139 
    5.2.4 本节小结 141 
    5.3 视觉计算模型的效能分析 141 
    5.3.1 确定视觉计算模型各层计算单元的位置 142 
    5.3.2 由类神经节细胞的空间位置产生的几何约束 143 
    5.3.3 视觉计算模型的效能平衡点 150 
    5.3.4 本节小结 152 
    参考文献 152 
    第6章 颜色拮抗机制的计算模型 153 
    6.1 颜色拮抗机制 153 
    6.2 一种基于非经典感受野的模型 156 
    6.2.1 模型设计 156 
    6.2.2 实验 164 
    6.2.3 本节小结 166 
    6.3 一种基于神经节细胞经典感受野拮抗机制的图像表征模型 167 
    6.3.1 模型设计 167 
    6.3.2 实验 175 
    6.3.3 本节小结 181 
    参考文献 182
    第7章 初级视皮层计算模型构建及其高阶功能探索 183 
    7.1 计算模型设计与实现 183 
    7.1.1 早期视觉系统模型 183 
    7.1.2 视网膜、外膝体层的模拟 184 
    7.1.3 方位柱的模拟实现 186 
    7.1.4 颜色通道的模拟实现 188 
    7.2 实验系统设计与分析 191 
    7.2.1 计算模型的设计验证 191 
    7.2.2 过程与结果的验证 194 
    7.2.3 高阶功能探索实验 200 
    参考文献 203 
    第8章 基于非经典感受野机制的计算模型 204 
    8.1 非经典感受野机制 204 
    8.1.1 经典感受野的生理学研究 204 
    8.1.2 非经典感受野的生理学研究 207 
    8.1.3 视网膜神经节细胞的非经典感受野神经机制 209 
    8.1.4 视网膜的逆向调控机制 209 
    8.1.5 固视微动 210 
    8.1.6 对非经典感受野已有工作的总结 211 
    8.2 三层网络模型 212 
    8.2.1 模型设计 213 
    8.2.2 实验结果 215 
    8.2.3 本节小结 218 
    8.3 多层次网络计算模型设计 218 
    8.3.1 计算回路设计 219 
    8.3.2 层次网络模型设计 221 
    8.3.3 GC感受野的数学模型 222 
    8.3.4 参数设置 223 
    8.3.5 动态感受野设计 229 
    8.4 图像表征的相关实验 231 
    8.4.1 一致性实验 231 
    8.4.2 简洁性实验 232 
    8.4.3 忠实性实验 236 
    8.5 通用表征对图像理解的促进实验 242 
    8.5.1 聚类促进实验 243
    8.5.2 分割促进实验 244 
    8.5.3 轮廓拟合实验 247 
    参考文献 253 
    第9章 朝向选择性模型及其应用 257 
    9.1 模型生理基础 257 
    9.1.1 初级视觉通路 258 
    9.1.2 神经节及外膝体细胞的感受野 259 
    9.1.3 简单细胞的感受野 262 
    9.2 LGN细胞对刺激的响应模型 265 
    9.2.1 与对比度无关的响应 265 
    9.2.2 响应函数及其性质 268 
    9.2.3 响应曲线 271 
    9.3 简单细胞的方向计算模型 272 
    9.3.1 基本最小二乘模型 273 
    9.3.2 非线性优化模型 274 
    9.3.3 模型求解及解的性质 276 
    9.3.4 误差分析 279 
    9.3.5 改进的非线性加权模型 280 
    9.3.6 理想Hubel-Wiesel条件下方向不唯一性 282 
    9.4 实验及分析 283 
    9.4.1 方向检测方法 283 
    9.4.2 模型的选择 284 
    9.4.3 参数的确定 285 
    9.4.4 简单细胞感受野的模拟 287 
    9.4.5 刺激复杂度与计算误差 288 
    9.5 模型应用一:图像的方向检测 289 
    9.5.1 检测方法 289 
    9.5.2 形状图像 292 
    9.5.3 自然图像 292 
    9.5.4 对更高层处理的增强 302 
    9.6 模型应用二:视错觉的几何解释 305 
    9.6.1 干扰导致计算偏差 305 
    9.6.2 错觉的解释 306 
    9.7 模型应用三:平面的朝向分析 312 
    9.7.1 三维图像信息获取 312
    9.7.2 成像模型 313 
    9.7.3 基本图形的三维信息 316 
    9.7.4 场景综合特征分析 322 
    9.7.5 实验 324 
    参考文献 328 
    第10章 基于非经典感受野的图像表征模型 336 
    10.1 非经典感受野机制 336 
    10.1.1 经典感受野 336 
    10.1.2 非经典感受野 339 
    10.1.3 视网膜神经节细胞的功能模型 341 
    10.1.4 非经典感受野和一些心理学实验现象的关系 342 
    10.1.5 经典感受野和非经典感受野的动态特征 343 
    10.2 视网膜神经节细胞的建模 344 
    10.2.1 神经节细胞非经典感受野作为图像表征的载体 344 
    10.2.2 神经节细胞感受野的数学模型 346 
    10.2.3 将RGB颜色值转换为类波长单值 348 
    10.2.4 神经节细胞计算模型的设计 350 
    10.3 神经节细胞感受野阵对图像的表征 360 
    10.3.1 从GC输出图像中进行图像重构 360 
    10.3.2 感受野与图像统计特征的关联性验证实验 362 
    10.3.3 感受野与多分辨率分析 367 
    10.3.4 感受野也是一种超像素 372 
    10.4 基于非经典感受野的表征对图像后期加工的促进作用 375 
    10.4.1 对特征配准的提升作用 375 
    10.4.2 对图像分割的提升作用 377 
    10.5 利用非经典感受野的表征实现图像多尺度融合轮廓检测 383 
    10.5.1 非经典感受野表征图像 383 
    10.5.2 算法设计 386 
    10.5.3 利用神经节细胞感受野尺寸变化得到多尺度信息 387 
    10.5.4 感受野响应值的计算 388 
    10.5.5 抑制区模型和去抑制区模型的数学模拟 389 
    10.5.6 实验结果 391 
    10.5.7 算法的性能评估 395 
    参考文献 403
    第11章 基于视皮层超柱结构的图像表征方法及其在形状识别中的应用 412 
    11.1 构建模拟初级视皮层V1区的神经网络 412 
    11.1.1 SOM神经网络的特性、结构与一般训练过程 412 
    11.1.2 基于SOM神经网络的模拟初级视皮层的V-SOM神经网络设计 414 
    11.1.3 V-SOM网络模拟皮层结果与真实生理数据对比实验 419 
    11.1.4 V-SOM神经网络训练过程的计算复杂度分析 422 
    11.2 基于超柱阵列的图像表征和图像重建方法 423 
    11.2.1 超柱阵列实现图像表征的计算过程 423 
    11.2.2 强化阵列图像表征计算能力 427 
    11.2.3 基于被激活朝向片点阵图的图像还原重建 431 
    11.2.4 基于被激活朝向片点阵的图像表征方式效能检测实验 435 
    11.3 基于超柱阵列的图像特征提取及其在形状识别中的应用 438 
    11.3.1 通过图的方法进行特征搜索 438 
    11.3.2 把模板目标路径与图像特征路径进行匹配来实现形状识别 446 
    11.3.3 使用本节方法进行基于形状的物体识别实验 455 
    11.4 基于超柱阵列主动加工的形状识别方法 461 
    11.4.1 主动加工方法的生理学基础及形状识别方法中存在的问题 462 
    11.4.2 基于超柱阵列的主动加工方法 465 
    11.4.3 使用主动加工的形状识别方法实例分析 467 
    参考文献 473 
    第12章 基于视皮层V4区模型的图像特征提取和物体形状识别 476 
    12.1 V4区神经元基础建模 476 
    12.1.1 V4区输入层建模 476 
    12.1.2 V4区神经元感知机模型 480 
    12.1.3 层内水平反馈连接的作用 483 
    12.2 V4区形状选择性的神经网络模型 486 
    12.2.1 V4多层神经网络模型 487 
    12.2.2 V4神经网络模型的形状选择性 493 
    12.2.3 图像处理实验 496 
    12.3 基于V4神经网络模型的特征提取和图像分类 503 
    12.3.1 图像特征提取 503 
    12.3.2 图像特征匹配 510 
    12.3.3 图像分类实验 515 
    12.4 基于V4形状特征的轮廓表示和物体检测 523 
    12.4.1 V4形状特征的定量描述 523
    12.4.2 从图像中提取V4形状特征 529 
    12.4.3 物体轮廓重绘实验 536 
    12.4.4 基于形状的物体识别 542 
    12.5 V4建模的展望 551 
    参考文献 554 
    第13章 神经编码的统计计算模型 558 
    13.1 神经编码研究的重要意义 558 
    13.1.1 研究背景 558 
    13.1.2 神经编码研究近况 559 
    13.2 神经编码的数学模型 561 
    13.2.1 神经脉冲发放的齐次泊松概率模型 561 
    13.2.2 神经脉冲发放的非齐次泊松概率模型 568 
    13.2.3 泊松概率模型的讨论 575 
    13.3 基于贝叶斯原理的动物行为预测 577 
    13.3.1 概率方法框架 577 
    13.3.2 动物行为预测算法 579 
    13.3.3 大鼠U迷宫和Y迷宫实验结果 591 
    13.3.4 基于概率方法的编码机制研究讨论 595 
    13.4 神经集群的信息表达 595 
    13.4.1 神经元的信息表达率 596 
    13.4.2 神经元信息表达率的影响因素 597 
    13.4.3 神经元集群信息表达 603 
    13.4.4 未来的连续信息表达问题 607 
    13.5 神经元功能性集团探测 607 
    13.5.1 多尺度下spike train的相关性 608 
    13.5.2 神经元功能性集团的探测算法 610 
    13.5.3 大鼠U迷宫中的神经元功能性集团 612 
    13.5.4 神经元功能集团研究未来 614 
    13.6 神经编码研究的进一步工作 614 
    参考文献 615 
    第14章 神经元功能网络特性分析及认知行为预测方法研究 619 
    14.1 脑神经信息分析的研究现状 619 
    14.2 在体多电极记录群体神经元spike train及海马计算模型 624 
    14.2.1 数据采集 624 
    14.2.2 多电极记录spike train 625
    14.2.3 海马计算模型产生spike train 631 
    14.3 神经元功能网络的复杂网络拓扑特性分析 641 
    14.3.1 神经元功能团 641 
    14.3.2 复杂网络的几个特性 642 
    14.3.3 拓扑特性分析 646 
    14.3.4 一种新的层次性分析方法 654 
    14.3.5 神经元功能团的研究结论 661 
    14.4 基于随机游走距离排序及谱分解的神经元功能网络社团结构划分 662 
    14.4.1 神经元功能团划分 662 
    14.4.2 谱图划分 664 
    14.4.3 随机游走模型 665 
    14.4.4 基于随机游走距离排序的社团结构划分算法 667 
    14.4.5 实验结果与分析 671 
    14.4.6 功能团结构划分的结论 678 
    14.5 社团结构划分评价函数 679 
    14.5.1 功能团划分的评价 679 
    14.5.2 社团系数C实现过程 680 
    14.5.3 实验结果 684 
    14.5.4 功能团划分性能评价的结论 691 
    14.6 基于神经元功能网络预测大鼠认知行为的选择 692 
    14.6.1 通过功能团预测认知行为 692 
    14.6.2 实验材料及方法 693 
    14.6.3 实验结果与分析 701 
    14.6.4 认识行为预测的总结 707 
    14.7 神经网络功能团结构划分的未来发展 707 
    14.7.1 已有工作的总结 707 
    14.7.2 未来展望 709 
    参考文献 710 
    第15章 基于生物脉冲神经元模型的功能神经回路计算建模 717 
    15.1 研究背景 717 
    15.1.1 计算神经科学的必要性:连接脑科学与人工智能 717 
    15.1.2 人工智能与认知神经科学领域的关系 718 
    15.1.3 认知神经计算:从微观的神经元活动到宏观的认知行为的计算建模 721 
    15.1.4 从微观到宏观的计算建模 724 
    15.1.5 对神经科学与人工智能等相关领域的研究意义 725
    15.1.6 基于生物脉冲的神经计算模型工作 729 
    15.2 神经功能回路计算模型的相关工作回顾 730 
    15.2.1 单个神经元计算模型的研究现状 731 
    15.2.2 神经脉冲的信息编码 734 
    15.2.3 神经元网络计算模型 735 
    15.3 生物脉冲神经元的信息加工机制与计算模型 739 
    15.3.1 生物机制脉冲神经元的生理学基础回顾 739 
    15.3.2 生物机制的脉冲神经元计算模型 744 
    15.3.3 脉冲神经元放电频率统计计算 747 
    15.3.4 动作电位的作用延迟与神经元的异步工作 750 
    15.3.5 神经回路的冗余性设计 752 
    15.3.6 锥体神经元放电频率的可调控性 755 
    15.3.7 神经功能回路中神经连接权重的学习法则 757 
    15.4 决策行为的神经功能回路的设计与实现 759 
    15.4.1 神经网络功能回路 760 
    15.4.2 趋光性飞行行为 761 
    15.4.3 控制器功能的神经回路结构设计 765 
    15.4.4 神经功能回路参数设置 769 
    15.4.5 神经回路分布式硬件仿真平台搭建 773 
    15.4.6 神经回路计算模型的趋光行为模拟与分析 775 
    15.4.7 为什么神经系统总能为一个具体的决策行为学习到一个神经回路? 781 
    15.4.8 神经回路研究的重要意义 788 
    15.5 基于逻辑神经微回路的决策神经回路模型构建 790 
    15.5.1 神经回路的微结构 791 
    15.5.2 神经元计算模型与参数设置 792 
    15.5.3 大脑皮层结构 793 
    15.5.4 类逻辑计算功能的神经回路模型结构设计 794 
    15.5.5 构建复合逻辑运算的神经功能回路模型 805 
    15.5.6 基于类逻辑功能神经回路构建大鼠决策行为的神经回路 807 
    15.5.7 神经回路微结构研究的意义 813 
    15.6 神经活动维持功能的神经回路计算模型 815 
    15.6.1 工作记忆 815 
    15.6.2 神经元计算模型 817 
    15.6.3 基于传递机制的信息维持神经功能回路设计 818 
    15.6.4 基于递归连接和突触属性的神经活动维持功能计算模型 823
    15.6.5 对工作记忆微回路研究的意义 838 
    15.7 基于spike神经元回路计算模型的研究展望 840 
    15.7.1 工作总结 840 
    15.7.2 本章的研究意义 841 
    15.7.3 未来工作展望 842 
    参考文献 843
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证