0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 力学 > 固体力学 > Fracture Mechanics of Nonhomogeneous Materials

相同语种的商品

浏览历史

Fracture Mechanics of Nonhomogeneous Materials


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Fracture Mechanics of Nonhomogeneous Materials
  • 书号:9787030700711
    作者:果立成,于红军,吴林志
  • 外文书名:
  • 装帧:平脊精装
    开本:B5
  • 页数:342
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2022-10-01
  • 所属分类:
  • 定价: ¥179.00元
    售价: ¥141.41元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书包含了作者近20年在非均匀材料断裂力学领域的重要研究成果。这些工作主要针对国际非均匀材料断裂力学领域理论模型的不足以及复杂界面条件下断裂力学领域能量积分理论的理论空白开展了系统、深入的研究,从基础理论到仿真方法提出了有特色的研究思想。具体工作包括:非均匀材料的断裂力学基本理论、非均匀材料的传统特殊指数型模型、具有一般属性的非均匀材料断裂力学模型、含复杂界面非均匀材料的区域无关积分方法、考虑界面残余应力的一般性区域无关积分模型等内容。这些工作,克服了一般属性非均匀材料(梯度材料)的断裂力学难题,澄清了近30年来人们对传统指数模型的质疑,拓展并完善了非均质材料断裂力学的理论体系。相关工作得到了国际权威学术期刊和相关领域权威专家的好评。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    Contents
    Preface
    Chapter 1 Fundamental theory of fracture mechanics of nonhomogeneous
    materials 1
    1.1 Internal crack 2
    1.1.1 Basic equations for nonhomogeneous materials 2
    1.1.2 Crack-tip fields for homogeneous materials 3
    1.1.3 Crack-tip fields for nonhomogeneous materials 6
    1.1.4 Crack-tip fields for nonhomogeneous orthotropic materials 12
    1.2 Interface crack 14
    1.2.1 Crack-tip fields of an interface crack 14
    1.2.2 Crack-tip fields of an interface crack between two nonhomogeneous media 19
    1.3 Three-dimensional curved crack 23
    1.3.1 Internal crack 23
    1.3.2 Interface crack 25
    References 26
    Chapter 2 Exponential models for crack problems in nonhomogeneous materials 28
    2.1 Crack model for nonhomogeneous materials with an arbitrarily oriented crack 29
    2.1.1 Basic equations and boundary conditions 29
    2.1.2 Full field solution for a crack in the nonhomogeneous medium 31
    2.1.3 Stress intensity factors (SIFs) and strain energy release rate (SERR) 36
    2.2 Crack problems in nonhomogeneous coating-substrate or double-layered structures 38
    2.2.1 Interface crack in nonhomogeneous coating-substrate structures 38
    2.2.2 Cross -interface crack parallel to the gradient of material properties 45
    2.2.3 Arbitrarily oriented crack in a double-layered structure 54
    2.3 Crack problems in orthotropic nonhomogeneous materials 69
    2.3.1 Basic equations and boundary conditions 69
    2.3.2 Solutions to stress and displacement fields 71
    2.3.3 Crack-tip SIFs 77
    2.4 Transient crack problem of a coating-substrate structure 78
    2.4.1 Basic equations and boundary conditions 78
    2.4.2 Solutions to stress and displacement fields 79
    2.4.3 Crack-tip SIFs 84
    2.5 Representative examples 85
    2.5.1 Example 1: Arbitrarily oriented crack in an infinite nonhomogeneous medium 85
    2.5.2 Example 2: Interface crack between the coating and the substrate 88
    2.5.3 Example 3: Crossing-interface crack perpendicular to the interface in a double-layered structure 89
    2.5.4 Example 4: Inclined crack crossing the interface 94
    2.5.5 Example 5: Vertical crack in a nonhomogeneous coating-substrate structure subjected to impact loading 96
    Appendix 2A 98
    References 99
    Chapter 3 General model for nonhomogeneous materials with general elastic properties 101
    3.1 Piecewise-exponential model for the mode I crack problem 102
    3.1.1 Piecewise-exponential model (PE model) 102
    3.1.2 Solutions to stress and displacement fields 105
    3.1.3 Crack-tip SIFs 111
    3.2 PE model for mixed-mode crack problem 112
    3.2.1 Basic equations and boundary conditions 112
    3.2.2 Solutions to stress and displacement fields 114
    3.2.3 Crack-tip SIFs 119
    3.3 PE model for dynamic crack problem 119
    3.3.1 Basic equations and boundary conditions 119
    3.3.2 Solutions to stress and displacement fields 123
    3.3.3 Crack-tip SIFs 126
    3.4 Representative examples 127
    3.4.1 Example 1: Mode I crack problem for nonhomogeneous materials with general elastic properties 127
    3.4.2 Example 2: Mixed-mode crack problem for nonhomogeneous materials with general elastic properties and an arbitrarily oriented crack 134
    3.4.3 Example 3: Dynamic Mode I crack problem for nonhomogeneous materials with general elastic properties 139
    Appendix 3A 145
    References 151
    Chapter 4 Fracture mechanics of nonhomogeneous materials based on piecewise-exponential model 153
    4.1 Thermomechanical crack models of nonhomogeneous materials 154
    4.1.1 Crack model for nonhomogeneous materials under steady thermal loads 154
    4.1.2 Crack model for nonhomogeneous materials under thermal shock load 157
    4.2 Viscoelastic crack model of nonhomogeneous materials 170
    4.2.1 The correspondence principle for viscoelastic FGMs 170
    4.2.2 Viscoelastic models for nonhomogeneous materials 173
    4.2.3 PE model for the viscoelastic nonhomogeneous materials 174
    4.3 Crack model for nonhomogeneous materials with stochastic properties 177
    4.3.1 Stochastic micromechanics-based model for effective properties 177
    4.3.2 Probabilistic characteristics of effective properties at transition region 182
    4.3.3 Crack in nonhomogeneous materials with stochastic mechanical properties 183
    4.4 Examples 188
    4.4.1 Example 1: Steady thermomechanical crack problem 188
    4.4.2 Example 2: Viscoelastic crack problem 195
    4.4.3 Example 3: Crack problem in FGMs with stochastic mechanical properties 198
    References 202
    Chapter 5 Fracture of nonhomogeneous materials with complex interfaces 205
    5.1 Interaction integral (I-integral) 207
    5.1.1 J-integral 207
    5.1.2 I-integral 208
    5.1.3 Auxiliary field 208
    5.1.4 Extraction of the SIFs 210
    5.2 Domain-independent I-integral (DII-integral) 211
    5.2.1 Domain form of the I-integral 211
    5.2.2 DII-integral 214
    5.3 DII-integral for orthotropic materials 220
    5.4 Consideration of dynamic process 223
    5.5 Calculation of the T-stress 225
    5.6 DII-integral for 3D problems 229
    5.6.1 I-integral 229
    5.6.2 Auxiliary fields 230
    5.6.3 Extraction of the SIFs 232
    5.6.4 Domain form of the I-integral 233
    5.6.5 DII-integral 236
    5.7 Typical fracture problems 241
    5.7.1 Stress intensity factor evaluations 241
    5.7.2 T-stress evaluations 243
    5.7.3 Stress intensity factors of a penny-shaped crack 246
    5.7.4 Influences of the material continuity on the SIFs 251
    References 256
    Chapter 6 Interfacial fracture of nonhomogeneous materials with complex interfaces 258
    6.1 I-integral for an interface crack 259
    6.1.1 J-integral and I-integral 259
    6.1.2 Auxiliary field 260
    6.1.3 Relation between the I-integral and the SIFs 262
    6.2 Domain-independent I-integral (DII-integral) 263
    6.2.1 DII-integral for materials with continuous properties 263
    6.2.2 DII-integral for materials with complex interfaces 265
    6.2.3 DII-integral for a curved interface crack 268
    6.2.4 Consideration of dynamic fracture process 269
    6.3 T-stress evaluation 270
    6.3.1 Auxiliary field 270
    6.3.2 Extraction of the T-stress 272
    6.4 DII-integral for 3D interface cracks 272
    6.4.1 Definition of the I-integral on the crack front 272
    6.4.2 Auxiliary fields for 3D interface crack 273
    6.4.3 Extraction of the SIFs 274
    6.4.4 Domain form of the I-integral 275
    6.4.5 DII-integral 277
    6.5 Representative interfacial fracture problems 279
    6.5.1 Straight interface crack 279
    6.5.2 A circular-arc shaped interface crack 284
    6.5.3 T-stress evaluation of biomaterial strips 287
    References 292
    Chapter 7 Thermal fracture of nonhomogeneous materials with complex interfaces 294
    7.1 Internal crack under thermal loading 295
    7.1.1 Basic equations of thermoelasticity 295
    7.1.2 I-integral for thermoelasticity 296
    7.1.3 Auxiliary field 297
    7.1.4 Extraction of the SIFs for thermoelastic media 297
    7.1.5 Domain form of the I-integral 298
    7.2 Interface crack under thermal loading 303
    7.2.1 Definition of the I-integral 303
    7.2.2 Auxiliary field 305
    7.2.3 Extraction of thermal SIFs 305
    7.2.4 I-integral for a thermoelastic solid with complex interfaces 306
    7.3 T-stress evaluation for nonhomogeneous thermoelasticity 308
    7.3.1 Auxiliary field 308
    7.3.2 Extraction of T-stress 309
    7.4 Generalized DII-integral for elasticity 311
    7.4.1 Requirements for the establishment of the DII-integral 311
    7.4.2 Design of the generalized auxiliary fields 315
    7.4.3 Generalized DII-integral 322
    7.5 A new DII-integral for thermoelasticity 324
    7.5.1 DII-integral for an internal crack 324
    7.5.2 DII-integral for an interface crack 327
    7.6 Typical thermal fracture problems 334
    7.6.1 Internal crack under thermal loading 334
    7.6.2 Particulate plate with an internal crack 336
    7.6.3 Multi-interface plate with an interface crack 339
    References 341
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证