0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 理论物理学 > 物理学中的拓扑和几何(影印版)

相同语种的商品

浏览历史

物理学中的拓扑和几何(影印版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
物理学中的拓扑和几何(影印版)
  • 书号:9787030187864
    作者:(德)比克(Bick,E.),斯特芬(Steffen,F.D.)编
  • 外文书名:Topology and Geometry in Physics
  • 装帧:精装
    开本:B5
  • 页数:376
    字数:439000
    语种:英文
  • 出版社:科学出版社
    出版时间:2007-04-01
  • 所属分类:O41 理论物理学
  • 定价: ¥65.00元
    售价: ¥51.35元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

拓扑和几何的概念与方法在物理学中的应用有助于加深人们对物理学的许多重要领域(如凝聚态物理、宇宙学、引力和粒子物理)的理解,本书是一本关于几何和拓扑在这些领域中的应用与发展的高级教材,书中分章节相对独立地介绍了规范理论、BRST量子化、手性异常、超对称孤子和非交换几何中的拓扑概念。本书适用于相关专业的的研究生、对本领域感兴趣的读者以及讲授相关课程的教师。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Introduction and Overview
    E. Bick, F.D. Steffen
    1 Topology and Geometry in Physics
    2 An Outline of the Book
    3 Complementary Literature
    Topological Concepts in Gauge Theories
    F. Lenz
    1 Introduction
    2 Nielsen-Olesen Vortex
    2.1 Abelian Higgs Model
    2.2 Topological Excitations
    3 Homotopy
    3.1 The Fundamental Group
    3.2 Higher Homotopy Groups
    3.3 Quotient Spaces
    3.4 Degree of Maps
    3.5 Topological Groups
    3.6 Transformation Groups
    3.7 Defects in Ordered Media
    4 Yang-Mills Theory
    5 \'t Hooft-Polyakov Monopole
    5.1 Non-Abelian Higgs Model
    5.2 The Higgs Phase
    5.3 Topological Excitations
    6 Quantization of Yang-Mills Theory
    7 Instantons
    7.1 Vacuum Degeneracy
    7.2 Tunneling
    7.3 Fermions in Topologically Non-trivial Gauge Fields
    7.4 Instanton Gas
    7.5 Topological Charge and Link Invariants
    8 Center Symmetry and Confinement
    8.1 Gauge Fields at Finite Temperature and Finite Extension
    8.2 Residual Gauge Symmetries in QED
    8.3 Center Symmetry in SU(2) Yang-Mills Theory
    8.4 Center Vortices
    8.5 The Spectrum of the SU(2) Yang-Mills Theory
    9 QCD in Axial Gauge
    9.1 Gauge Fixing
    9.2 Perturbation Theory in the Center-Symmetric Phase
    9.3 Polyakov Loops in the Plasma Phase
    9.4 Monopoles
    9.5 Monopoles and Instantons
    9.6 Elements of Monopole Dynamics
    9.7 Monopoles in Diagonalization Gauges
    10 Conclusions
    Aspects of BRST Quantization
    J. W. van Holten
    1 Symmetries and Constraints
    1.1 Dynamical Systems with Constraints
    1.2 Symmetries and Noether\'s Theorems
    1.3 Canonical Formalism
    1.4 Quantum Dynamics
    1.5 The Relativistic Particle
    1.6 The Electro-magnetic Field
    1.7 Yang-Mills Theory
    1.8 The Relativistic String
    2 Canonical BRST Construction
    2.1 Grassmann Variables
    2.2 Classical BRST Transformations
    2.3 Examples
    2.4 Quantum BRST Cohomology
    2.5 BRST-Hodge Decomposition of States
    2.6 BRST Operator Cohomology
    2.7 Lie-Algebra Cohomology
    3 Action Formalism
    3.1 BRST Invariance from Hamilton\'s Principle
    3.2 Examples
    3.3 Lagrangean BRST Formalism
    3.4 The Master Equation
    3.5 Path-Integral Quantization
    4 Applications of BRST Methods
    4.1 BRST Field Theory
    4.2 Anomalies and BRST Cohomology
    Appendix. Conventions
    Chiral Anomalies and Topology
    J. Zinn-Justin
    1 Symmetries, Regularization, Anomalies
    2 Momentum Cut-Off Regularization
    2.1 Matter Fields: Propagator Modification
    2.2 Regulator Fields
    2.3 Abelian Gauge Theory
    2.4 Non-Abelian Gauge Theories
    3 Other Regularization Schemes
    3.1 Dimensional Regularization
    3.2 Lattice Regularization
    3.3 Boson Field Theories
    3.4 Fermions and the Doubling Problem
    4 The Abelian Anomaly
    4.1 Abelian Axial Current and Abelian Vector Gauge Fields
    4.2 Explicit Calculation
    4.3 Two Dimensions
    4.4 Non-Abelian Vector Gauge Fields and Abelian Axial Current
    4.5 Anomaly and Eigenvalues of the Dirac Operator
    5 Instantons, Anomalies, and 0-Vacua
    5.1 The Periodic Cosine Potential
    5.2 Instantons and Anomaly: CP(N-1) Models
    5.3 Instantons and Anomaly: Non-Abelian Gauge Theories
    5.4 Fermions in an Instanton Background
    6 Non-Abelian Anomaly
    6.1 General Axial Current
    6.2 Obstruction to Gauge Invariance
    6.3 Wess-Zumino Consistency Conditions
    7 Lattice Fermions: Ginsparg-Wilson Relation
    7.1 Chiral Symmetry and Index
    7.2 Explicit Construction:Overlap Fermions
    8 Supersymmetric Quantum Mechanics and Domain Wall Fermions
    8.1 Supersymmetric Quantum Mechanics
    8.2 Field Theory in Two Dimensions
    8.3 Domain Wall Fermions
    Appendix A. Trace Formula for Periodic Potentials
    Appendix B. Resolvent of the Hamiltonian in Supersymmetric QM
    Supersymmetric Solitons and Topology
    M. Shifman
    1 Introduction
    2 D = 1+1; N=1
    2.1 Critical (BPS) Kinks
    2.2 The Kink Mass (Classical)
    2.3 Interpretation of the BPS Equations. Morse Theory
    2.4 Quantization. Zero Modes: Bosonic and Fermionic
    2.5 Cancelation of Nonzero Modes
    2.6 Anomaly I
    2.7 Anomaly II (Shortening Supermultiplet Down to One State)
    3 Domain Walls in (3+1)-Dimensional Theories
    3.1 Superspace and Superfields
    3.2 Wess-Zumino Models
    3.3 Critical Domain Walls
    3.4 Finding the Solution to the BPS Equation
    3.5 Does the BPS Equation Follow from the Second Order Equation
    of Motion?
    3.6 Living on a Wall
    4 Extended Supersymmetry in Two Dimensions:
    The Supersymmetric CP(1) Model
    4.1 Twisted Mass
    4.2 BPS Solitons at the Classical Level
    4.3 Quantization of the Bosonic Moduli
    4.4 The Soliton Mass and Holomorphy
    4.5 Switching On Fermions
    4.6 Combining Bosonic and Fermionic Moduli
    5 Conclusions
    Appendix A. CF(l) Model- 0(3) Model (N=1 Superfields N)
    Appendix B. Getting Started (Supersymmetry for Beginners)
    B.1 Promises of Supersymmetry
    B.2 Cosmological Term
    B.3 Hierarchy Problem
    Forces from Connes\' Geometry
    T. Schücker
    i Introduction
    2 Gravity from Riemannian Geometry
    2.1 First Stroke: Kinematics
    2.2 Second Stroke: Dynamics
    3 Slot Machines and the Standard Model
    3.1 Input
    3.2 Rules
    3.3 The Winner
    3.4 Wick Rotation
    4 Connes’ Noncommutative Geometry
    4.1 Motivation: Quantum Mechanics
    4.2 The Calibrating Example: Riemannian Spin Geometry
    4.3 Spin Groups
    5 The Spectral Action
    5.1 Repeating Einstein\'s Derivation in the Commutative Case
    5.2 Almost Commutative Geometry
    5.3 The Minimax Example
    5.4 A Central Extension
    6 Connes’ Do-It-Yourself Kit
    6.1 Input
    6.2 Output
    6.3 The Standard Model
    6.4 Beyond the Standard Model
    7 Outlook and Conclusion
    Appendix
    A.1 Groups
    A.2 Group Representations
    A.3 Semi-Direct Product and Poincaré Group
    A.4 Algebras
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证