0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 理论物理学 > 量子物理中的格林函数(影印版)(第三版)

相同语种的商品

浏览历史

量子物理中的格林函数(影印版)(第三版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
量子物理中的格林函数(影印版)(第三版)
  • 书号:9787030240071
    作者:E.N.Economou
  • 外文书名:Green’s Functions in Quantum Physics
  • 装帧:精装
    开本:B5
  • 页数:460
    字数:600000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-03
  • 所属分类:O41 理论物理学
  • 定价: ¥89.00元
    售价: ¥70.31元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

The main part of this book is devoted to the simplest kind of Green’s functions, namely the solutions of that differential equations with a delta function source. It is shown that these familiar Green’s functions are a powerful tool for obtaining relatively simple and general solutions of basic quantum problems such as scattering and bound-level information. The bound-level treatment gives a clear physical understanding of “difficult”questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green’s functions is presented in the last part of the book.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Part I Green's Functions in Mathematical Physics
    1 Time-Independent Green's Functions
    1.1 Formalism
    1.2 Examples
    1.2.1 Three-Dimensional Case (d=3)
    1.2.2 Two-Dimensional Case (d=2)
    1.2.3 One-Dimensional Case (d=1)
    1.2.4 Finite Domain Ω
    1.3 Summary
    1.3.1 Definition
    1.3.2 Basic Properties
    1.3.3 Methods of Calculation
    1.3.4 Use
    Further Reading
    Problems
    2 Time-Dependent Green's Function
    2.1 First-Order Case
    2.1.1 Examples
    2.2 Second-Order Case
    2.2.1 Examples
    2.3 Summary
    2.3.1 Definition
    2.3.2 Basic Properties
    2.3.3 Definition
    2.3.4 Basic Properties
    2.3.5 Use
    Further Reading
    Problems
    Part II Green's Functions in One-Body Quantum Problems
    3 Physical Significance of G. Application to the Free-Particle Case
    3.1 General Relations
    3.2 The Free-Particle (H0=p22m) Case
    3.2.1 3-d Case
    3.2.2 2-d Case
    3.2.3 1-d Case
    3.3 The Free-Particle Klein-Gordon Case
    3.4 Summary
    Further Reading
    Problems
    4 Green's Functions and Perturbation Theory
    4.1 Formalism
    4.1.1 Time-Independent Case
    4.1.2 Time-Dependent Case
    4.2 Applications
    4.2.1 Scattering Theory (E>0)
    4.2.2 Bound State in Shallow Potential Wells (E<0)
    4.2.3 The KKR Method for Electronic Calculations in Solids
    4.3 Summary
    Further Reading
    Problems
    5 Green's Functions for Tight-Binding Hamiltonians
    5.1 Introductory Remarks
    5.2 The Tight-Binding Hamiltonian (TBH)
    5.3 Green's Functions
    5.3.1 One-Dimensional Lattice
    5.3.2 Square Lattice
    5.3.3 Simple Cubic Lattice
    5.3.4 Green's Functions for Bethe Lattices (Cayley Trees)
    5.4 Summary
    Further Reading
    Problems
    6 Single Impurity Scattering
    6 Single Impurity Scattering
    6.1 Formalism
    6.2 Explicit Results for a Single Band
    6.2.1 Three-Dimensional Case
    6.2.2 Two-Dimensional Case
    6.2.3 One-Dimensional Case
    6.3 Applications
    6.3.1 Levels in the Gap
    6.3.2 The Cooper Pair and Superconductivity
    6.3.3 The Kondo Problem
    6.3.4 Lattice Vibrations in Crystals Containing “Isotope” Impurities
    6.4 Summary
    Further Reading
    Problems
    7 Two or More Impurities; Disordered Systems
    7.1 Two Impurities
    7.2 Infinite Number of Impurities
    7.2.1 Virtual Crystal Approximation (VCA)
    7.2.2 Average t-Matrix Approximation (ATA)
    7.2.3 Coherent Potential Approximation (CPA)
    7.2.4 The CPA for Classical Waves
    7.2.5 Direct Extensions of the CPA
    7.2.6 Cluster Generalizations of the CPA
    7.3 Summary
    Further Reading
    Problems
    8 Electrical Conductivity and Green's Functions
    8.1 Electrical Conductivity and Related Quantities
    8.2 Various Methods of Calculation
    8.2.1 Phenomenological Approach
    8.2.2 Boltzmann's Equation
    8.2.3 A General,Independent-Particle Formula for Conductivity
    8.2.4 General Linear Response Theory
    8.3 Conductivity in Terms of Green's Functions
    8.3.1 Conductivity Without Vertex Corrections
    8.3.2 CPA for Vertex Corrections
    8.3.3 Vertex Corrections Beyond the CPA
    8.3.4 Post-CPA Corrections to Conductivity
    8.4 Summary
    Further Reading
    Problems
    9 Localization,Transport,and Green's Functions
    9.1 An Overview
    9.2 Disorder,Diffusion,and Interference
    9.3 Localization
    9.3.1 Three-Dimensional Systems
    9.3.2 Two-Dimensional Systems
    9.3.3 One-Dimensional and Quasi-One-Dimensional Systems
    9.4 Conductance and Transmission
    9.5 Scaling Approach
    9.6 Other Calculational Techniques
    9.6.1 Quasi-One-Dimensional Systems and Scaling
    9.6.2 Level Spacing Statistics
    9.7 Localization and Green's Functions
    9.7.1 Green's Function and Localization in One Dimension
    9.7.2 Renormalized Perturbation Expansion (RPE) and Localization
    9.7.3 Green's Functions and Transmissions in Quasi-One-Dimensional Systems
    9.8 Applications
    9.9 Summary
    Further Reading
    Problems
    Part III Green's Functions in Many-Body Systems
    10 Definitions
    10.1 Single-Particle Green's Functions in Terms of Field Operators
    10.2 Green's Functions for Interacting Particles
    10.3 Green's Functions for Noninteracting Particles
    10.4 Summary
    Further Reading
    Problems
    11 Properties and Use of the Green's Functions
    11.1 Analytical Properties of gs and gs
    11.2 Physical Snificance and Use of gs and gs
    11.3 Quasiparticles
    11.4 Summary
    11.4.1 Properties
    11.4.2 Use
    Further Reading
    Problems
    12 Calculational Methods for g
    12.1 Equation of Motion Method
    12.2 Diagrammatic Method for Fermions at T=0
    12.3 Diagrammatic Method for T≠0
    12.4 Partial Summations. Dyson's Equation
    12.5 Other Methods of Calculation
    12.6 Summary
    Further Reading
    Problems
    13 Applications
    13.1 Normal Fermi Systems. Landau Theory
    13.2 High-Density Electron Gas
    13.3 Dilute Fermi Gas
    13.4 Superconductivity
    13.4.1 Diagrammatic Approach
    13.4.2 Equation of Motion Approach
    13.5 The Hubbard Model
    13.6 Summary
    Further Reading
    Problems
    A Dirac's delta Function
    B Dirac's bra and ket Notation
    C Solutions of Laplace and Helmholtz Equations in Various Coordinate Systems
    C.1 Helmholtz Equation (Δ2+k2)ψ(r)=0
    C.1.1 Cartesian Coordinates x,y,z
    C.1.2 Cylindrical Coordinates z,Φ,p
    C.1.3 Spherical coordinates r,Θ,Φ
    C.2 Vector Derivatives
    C.2.1 Spherical Coordinates r,Θ,Φ
    C.2.2 Cylindrical Coordinates z,p,Φ
    C.3 Schrodinger Equation in Centrally Symmetric 3-and 2-Dimensional Potential V
    D Analytic Behavior of G(z) Near a Band Edge
    E Wannier Functions
    F Renormalized Perturbation Expansion (RPE)
    G Boltzmann's Equation
    H Transfer Matrix,S-Matrix,etc.
    I Second Quantization
    Solutions of Selected Problems
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证