0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 物理 > 理论物理学 > 量子系统中的几何相位

相同语种的商品

浏览历史

量子系统中的几何相位


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
量子系统中的几何相位
  • 书号:9787030240088
    作者:A.Bohm等
  • 外文书名:The Geometric Phase in Quantum Systems:Foundations,Mathematical Concepts,and Applications in Molecular and Condensed Matter Physics
  • 装帧:精装
    开本:B5
  • 页数:460
    字数:580000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-03
  • 所属分类:O41 理论物理学
  • 定价: ¥86.00元
    售价: ¥67.94元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

Aimed at graduate physics and chemistry, students, this is the first Comprechensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations, It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase. It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics). The mathematical methods used are a combination of differential geometry and the theory ofIinear operators in Hilbert Space, As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed. Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum methanics and how to measure them.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1. Introduction
    2. Quantal Phase Factors for Adiabatic Changes
    2.1 Introduction
    2.2 Adiabatic Approximation
    2.3 Berry's Adiabatic Phase
    2.4 Topological Phases and the Aharonov-Bohm Effect
    Problems
    3. Spinning Quantum System in an External Magnetic Field
    3.1 Introduction
    3.2 The Parameterization of the Basis Vectors
    3.3 Mead-Berry Connection and Berry Phase for Adiabatic Evolutions-Magnetic Monopole Potentials
    3.4 The Exact Solution of the SchrSdinger Equation
    3.5 Dynamical and Geometrical Phase Factors for Non-Adiabatic Evolution
    Problems
    4. Quantal Phases for General Cyclic Evolution
    4.1 Introduction
    4.2 Aharonov-Anandan Phase
    4.3 Exact Cyclic Evolution for Periodic Hamiltonians
    Problems
    5. Fiber Bundles and Gauge Theories
    5.1 Introduction
    5.2 From Quantal Phases to Fiber Bundles
    5.3 An Elementary Introduction to Fiber Bundles
    5.4 Geometry of Principal Bundles and the Concept of Holonomy
    5.5 Gauge Theories
    5.6 Mathematical Foundations of Gauge Theories and Geometry of Vector Bundles
    Problems
    6. Mathematical Structure of the Geometric Phase Ⅰ: The Abelian Phase
    6.1 Introduction
    6.2 Holonomy Interpretations of the Geometric Phase
    6.3 Classification of U(1) Principal Bundles and the Relation Between the Berry-Simon and Aharonov-Anandan Interpretations of the Adiabatic Phase
    6.4 Holonomy Interpretation of the Non-Adiabatic Phase Using a Bundle over the Parameter Space
    6.5 Spinning Quantum System and Topological Aspects of the Geometric Phase
    Problems
    7. Mathematical Structure of the Geometric Phase Ⅱ: The Non-Abelian Phase
    7.1 Introduction
    7.2 The Non-Abelian Adiabatic Phase
    7.3 The Non-Abelian Geometric Phase
    7.4 Holonomy Interpretations of the Non-Abelian Phase
    7.5 Classification of U(N) Principal Bundles and the Relation Between the Berry-Simon and Aharonov-Anandan Interpretations of Non-Abelian Phase
    Problems
    8. A Quantum Physical System in a Quantum Environment-The Gauge Theory of Molecular Physics
    8.1 Introduction
    8.2 The Hamiltonian of Molecular Systems
    8.3 The Born-Oppenheimer Method
    8.4 The Gauge Theory of Molecular Physics
    8.5 The Electronic States of Diatomic Molecule
    8.6 The Monopole of the Diatomic Molecule
    Problems
    9. Crossing of Potential Energy Surfaces and the Molecular Aharonov-Bohm Effect
    9.1 Introduction
    9.2 Crossing of Potential Energy Surfaces
    9.3 Conical Intersections and Sign-Change of Wave Functions
    9.4 Conical Intersections in Jahn-Teller Systems
    9.5 Symmetry of the Ground State in Jahn Teller Systems
    9.6 Geometric Phase in Two Kramers Doublet Systems
    9.7 Adiabatic Diabatic Transformation
    10. Experimental Detection of Geometric Phases Ⅰ: Quantum Systems in Classical Environments
    10.1 Introduction
    10.2 The Spin Berry Phase Controlled by Magnetic Fields
    10.2.1 Spins in Magnetic Fields: The Laboratory Frame
    10.2.2 Spins in Magnetic Fields: The Rotating Frame
    10.2.3 Adiabatic Reorientation in Zero Field
    10.3 Observation of the Aharonov-Anandan Phase Through the Cyclic Evolution of Quantum States
    Problems
    11. Experimental Detection of Geometric Phases Ⅱ: Quantum Systems in Quantum Environments
    11.1 Introduction
    11.2 Internal Rotors Coupled to External Rotors
    11.3 Electronic-Rotational Coupling
    11.4 Vibronic Problems in Jahn-Teller Systems
    11.4.1 Transition Metal Ions in Crystals
    11.4.2 Hydrocarbon Radicals
    11.4.3 Alkali Metal Trimers
    11.5 The Geometric Phase in Chemical Reactions
    12. Geometric Phase in Condensed Matter Ⅰ: Bloch Bands
    12.1 Introduction
    12.2 Bloch Theory
    12.2.1 One-Dimensional Case
    12.2.2 Three-Dimensional Case
    12.2.3 Band Structure Calculation
    12.3 Semiclassical Dynamics
    12.3.1 Equations of Motion
    12.3.2 Symmetry Analysis
    12.3.3 Derivation of the Semiclassical Formulas
    12.3.4 Tiine-Dependent Bands
    12.4 Applications of Semiclassical Dynamics
    12.4.1 Uniform DC Electric Field
    12.4.2 Uniform and Constant Magnetic Field
    12.4.3 Perpendicular Electric and Magnetic Fields
    12.4.4 Transport
    12.5 Wannier Functions
    12.5.1 General Properties
    12.5.2 Localization Properties
    12.6 Some Issues on Band Insulators
    12.6.1 Quantized Adiabatic Particle Transport
    12.6.2 Polarization
    Problems
    13. Geometric Phase in Condensed Matter Ⅱ: The Quantum Hall Effect
    13.1 Introduction
    13.2 Basics of the Quantum Hall Effect
    13.2.1 The Hall Effect
    13.2.2 The Quantum Hall Effect
    13.2.3 The Ideal Model
    13.2.4 Corrections to Quantization
    13.3 Magnetic Bands in Periodic Potentials
    13.3.1 Single-Band Approximation in a Weak Magnetic Field
    13.3.2 Harper's Equation and Hofstadter's Butterfly
    13.3.3 Magnetic Translations
    13.3.4 Quantized Hall Conductivity
    13.3.5 Evaluation of the Chern Number
    13.3.6 Semiclassical Dynamics and Quantization
    13.3.7 Structure of Magnetic Bands and Hyperorbit Levels
    13.3.8 Hierarchical Structure of the Butterfly
    13.3.9 Quantization of Hyperorbits and Rule of Band Splitting
    13.4 Quantization of Hall Conductance in Disordered Systems
    13.4.1 Spectrum and Wave Functions
    13.4.2 Perturbation and Scattering Theory
    13.4.3 Laughlin's Gauge Argument
    13.4.4 Hall Conductance as a Topological Invariant
    14. Geometric Phase in Condensed Matter Ⅲ: Many-Body Systems
    14.1 Introduction
    14.2 Fractional Quantum Hall Systems
    14.2.1 Laughlin Wave Function
    14.2.2 Fractional Charged Excitations
    14.2.3 Fractional Statistics
    14.2.4 Degeneracy and Fractional Quantization
    14.3 Spin-Wave Dynamics in Itinerant Magnets
    14.3.1 General Formulation
    14.3.2 Tight-Binding Limit and Beyond
    14.3.3 Spin Wave Spectrum
    14.4 Geometric Phase in Doubly-Degenerate Electronic Bands
    Problem
    A. An Elementary Introduction to Manifolds and Lie Groups
    A.1 Introduction
    A.2 Differentiable Manifolds
    A.3 Lie Groups
    B. A Brief Review of Point Groups of Molecules with Application to Jahn-Teller Systems
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证