0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 材料工程 > 纳米力学与材料:理论多尺度方法和应用

相同语种的商品

浏览历史

纳米力学与材料:理论多尺度方法和应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
纳米力学与材料:理论多尺度方法和应用
  • 书号:9787030182562
    作者:(美)廖荣锦等编著
  • 外文书名:Nano Mechanics and Materials
  • 装帧:平装
    开本:B5
  • 页数:336
    字数:530000
    语种:英文
  • 出版社:科学出版社
    出版时间:2007-01-12
  • 所属分类:TB3 工程材料学
  • 定价: ¥48.00元
    售价: ¥37.92元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

  合成与分析纳米物质特性的能力取得了革命性的进展,广泛应用于生物医学、机械、电子、精密材料以及军事工程等领域。纳米力学是研究和描述单个原子、系统和结构在各种载荷条件下响应的机械行为特性的学科,它的发展促进了该技术的进步。尤其是多尺度建模方法,它可以使此领域的工程师更好的理解微纳米材料。
  本书由该领域内资深专家撰写,对纳米力学和材料的基本概念进行了介绍,侧重于多重尺度建模方法和技术的研究。本书内容包括:分子力学基础,微粒系统、晶格机械及现代多尺度建模理论等。
  本书是一本相关领域电子工程师、材料科研工作者开发微纳米材料应用的全面的指南,同时也可作为微纳米力学和微纳米技术专业研究生的参考书。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 1 Introduction
    1.1 Potential of Nanoscale Engineering
    1.2 Motivation for Multiple Scale Modeling
    1.3 Educational Approach
    2 Classical Molecular Dynamics
    2.1 Mechanics of a System of Particles
    2.1.1Generalized Coordinates
    2.1.2 Mechanical Forces and Potential Energy
    2.1.3 Lagrange Equations of Motion
    2.1.4 Integrals of Motion and Symmetric Fields
    2.1.5 Newtonian Equations
    2.1.6 Examples
    2.2 Molecular Forces
    2.2.1 External Fields
    2.2.2 Pair-Wise Interaction
    2.2.3 Multibody Interaction
    2.2.4 Exercises
    2.3 Molecular Dynamics Applications
    3 Lattice Mechanics
    3.1 Elements of Lattice Symmetries
    3.1.1 Bravais Lattices
    3.1.2 Basic Symmetry Principles
    3.1.3 Crystallographic Directions and Planes
    3.2 Equation of Motion of a Regular Lattice
    3.2.1 Unit Cell and the Associate Substructure
    3.2.2 Lattice Lagrangian and Equations of Motion
    3.2.3 Examples
    3.3 Transforms
    3.3.1 Fourier Transform
    3.3.2 Laplace Transform
    3.3.3 Discrete Fourier Transform
    3.4 Standing Waves in Lattices
    3.4.1 NormalModes and Dispersion Branches
    3.4.2 Examples
    3.5 Green\\\'s Function Methods
    3.5.1 Solution for a Unit Pulse
    3.5.2 Free Lattice with Initial Perturbations
    3.5.3 Solution for Arbitrary Dynamic Loads
    3.5.4 General Inhomogeneous Solution
    3.5.5 Boundary Value Problems and the Time History Kernel
    3.5.6 Examples
    3.6 Quasi-Static Approximation
    3.6.1 Equilibrium State Equation
    3.6.2 Quasi-Static Green\\\'s Function
    3.6.3 Multiscale Boundary Conditions
    4 Methods of Thermodynamics and Statistical Mechanics
    4.1 Basic Results of the Thermodynamic Method
    4.1.1State Equations
    4.1.2 Energy Conservation Principle
    4.1.3 Entropy and the Second Law of Thermodynamics
    4.1.4 Nernst\\\'s Postulate
    4.1.5 Thermodynamic Potentials
    4.2 Statistics of Multiparticle Systems in Thermodynamic Equilibrium
    4.2.1 Hamiltonian Formulation
    4.2.2 Statistical Description of Multiparticle Systems
    4.2.3 Microcanonical Ensemble
    4.2.4 Canonical Ensemble
    4.2.5 Maxwell-Boltzmann Distribution
    4.2.6 Thermal Properties of Periodic Lattices
    4.3 Numerical Heat Bath Techniques
    4.3.1 Berendsen Thermostat
    4.3.2 Nosé-Hoover Heat Bath
    4.3.3 Phonon Method for Solid-Solid Interfaces
    5 Introduction to Multiple Scale Modeling
    5.1 MAAD
    5.2 Coarse-Grained Molecular Dynamics
    5.3 Quasi-Continuum Method
    5.4 CADD
    5.5 Bridging Domain
    6 Introduction to Bridging Scale
    6.1 Bridging Scale Fundamentals
    6.1.1 Multiscale Equations of Motion
    6.2 Removing Fine Scale Degrees of Freedom in Coarse Scale Region
    6.2.1 Relationship of Lattice Mechanics to Finite Elements
    6.2.2 Linearized MD Equation of Motion
    6.2.3 Elimination of Fine Scale Degrees of Freedom
    6.2.4 Commentary on Reduced Multiscale Formulation
    6.2.5 Elimination of Fine Scale Degrees of Freedom:3D Generalization
    6.2.6 Numerical Implementation of Impedance Force
    6.2.7 Numerical Implementation of Coupling Force
    6.3 Discussion on the Damping Kernel Technique
    6.3.1 Programming Algorithm for Time History Kernel
    6.4 Cauchy-Born Rule
    6.5 Virtual Atom Cluster Method,
    6.5.1 Motivations and General Formulation
    6.5.2 General Idea of the VAC Model
    6.5.3 Three-Way Concurrent Coupling with QM Method
    6.5.4 Tight-Binding Method for Carbon Systems
    6.5.5 Coupling with the VAC Model
    6.6 Staggered Time Integration Algorithm
    6.6.1 MD Update
    6.6.2 FE Update
    6.7 Summary of Bridging Scale Equations
    6.8 Discussion on the Bridging Scale Method
    7 Bridging Scale Numerical Examples
    7.1 Comments on Time History Kernel
    7.2 1 D Bridging Scale Numerical Examples
    7.2.1 Lennard-Jones Numerical Examples
    7.2.2 Comparison of VAC Method and Cauchy-Born Rule
    7.2.3 Truncation of Time History Kernel
    7.3 2D/3D Bridging Scale Numerical Examples
    7.4 Two-Dimensional Wave Propagation
    7.5 Dynamic Crack Propagation in Two Dimensions
    7.6 Dynamic Crack Propagation in Three Dimensions
    7.7 Virtual Atom Cluster Numerical Examples
    7.7.1 Bending of Carbon Nanotubes
    7.7.2 VAC Coupling with Tight Binding
    8 Non-Nearest Neighbor MD Boundary Condition
    8.1 Introduction
    8.2 Theoretical Formulation in 3D
    8.2.1 Force Boundary Condition: 1D Illustration
    8.2.2 Displacement Boundary Condition: 1D Illustration
    8.2.3 Comparison to Nearest Neighbors Formulation
    8.2.4 Advantages of Displacement Formulation
    8.3 Numerical Examples: 1D Wave Propagation
    8.4 Time-History Kernels for FCC Gold
    8.5 Conclusion for the Bridging Scale Method
    8.5.1 Bridging Scale Perspectives
    9 Multiscale Methods for Material Design
    9.1 Multiresolution Continuum Analysis
    9.1.1 Generalized Stress and Deformation Measures
    9.1.2 Interaction between Scales
    9.1.3 Multiscale Materials Modeling
    9.2 Multiscale Constitutive Modeling of Steels
    9.2.1 Methodology and Approach
    9.2.2 First-Principles Calculation
    9.2.3 Hierarchical Unit Cell and Constitutive Model
    9.2.4 Laboratory Specimen Scale: Simulation and Results
    9.3 Bio-Inspired Materials
    9.3.1 Mechanisms of Self-Healing in Materials
    9.3.2 Shape-Memory Composites
    9.3.3 Multiscale Continuum Modeling of SMA Composites
    9.3.4 Issues of Modeling and Simulation
    9.4 Summary and Future Research Directions
    10 Bio-Nano Interface
    10.1 Introduction
    10.2 Immersed Finite Element Method
    10.2.1 Formulation
    10.2.2 Computational Algorithm of IFEM
    10.3 Vascular Flow and Blood Rheology
    10.3.1 Heart Model
    10.3.2 Flexible Valve-Viscous Fluid Interaction
    10.3.3 Angioplasty Stent
    10.3.4 Monocyte Deposition
    10.3.5 Platelet Adhesion and Blood Clotting
    10.3.6 RBC Aggregation and Interaction
    10.4 Electrohydrodynamic Coupling
    10.4.1 Maxwell Equations
    10.4.2 Electro-manipulation
    10.4.3 Rotation of CNTs Induced by Electroosmotic Flow
    10.5 CNT/DNA Assembly Simulation
    10.6 Cell Migration and Cell-Substrate Adhesion
    10.7 Conclusions
    Appendix A Kernel Matrices for EAM Potential
    Bibliography
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证