0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 信息技术 > 自动化 > 不确定动态系统智能评判学习与控制

相同作者的商品

相同语种的商品

浏览历史

不确定动态系统智能评判学习与控制


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
不确定动态系统智能评判学习与控制
  • 书号:9787030623140
    作者:王鼎
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:219
    字数:276000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2019-10-01
  • 所属分类:
  • 定价: ¥98.00元
    售价: ¥77.42元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书详细阐述不确定动态系统智能评判学习与控制的基础理论,以及核心方法与典型应用,包括数据驱动智能优化调节、事件驱动自适应控制设计、自学习鲁棒镇定与轨迹跟踪等,并涵盖关于自适应评判系统稳定性、收敛性、最优性以及鲁棒性的分析。全书分为两篇,第一篇(1~5章)探讨连续时间系统,第二篇(6~10章)探讨离散时间系统。在成书过程中,作者结合人工智能领域的新技术,对智能评判学习与控制的发展前景也进行了一些探讨。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    前言
    第一篇 连续时间系统
    第1章 不确定系统智能评判学习与控制概述 3
    1.1 引言 3
    1.2 自适应评判控制设计 5
    1.2.1 基本设计思路 5
    1.2.2 神经网络实现与系统稳定性分析 7
    1.2.3 改进评判网络学习准则 9
    1.3 鲁棒自适应评判控制设计 10
    1.3.1 基本鲁棒镇定设计 10
    1.3.2 鲁棒轨迹跟踪问题 12
    1.3.3 结合事件驱动机制的讨论 14
    1.4 自适应H1控制设计 16
    1.5 应用与前景 19
    1.6 本章小结 20
    第2章 基于学习的复杂非线性系统鲁棒优化 21
    2.1 引言 21
    2.2 问题描述 22
    2.3 自学习鲁棒优化控制设计 23
    2.3.1 控制问题转化 24
    2.3.2 神经网络实现 26
    2.3.3 闭环系统稳定性分析 28
    2.4 复杂关联系统分散镇定 31
    2.5 仿真实验 34
    2.6 本章小结 39
    第3章 事件驱动环境下的自适应保成本控制 40
    3.1 引言 40
    3.2 问题描述 41
    3.3 事件驱动保成本控制设计 44
    3.3.1 事件驱动机制描述 44
    3.3.2 智能评判控制的神经网络实现 47
    3.3.3 闭环系统稳定性分析 49
    3.3.4 Zeno行为消除 52
    3.4 仿真实验 53
    3.5 本章小结 61
    第4章 连续时间非线性鲁棒控制与跟踪综合 62
    4.1 引言 62
    4.2 问题描述 63
    4.3 自学习鲁棒控制综合 64
    4.3.1 鲁棒镇定设计基础 64
    4.3.2 神经网络实现 65
    4.4 自学习鲁棒跟踪控制 66
    4.4.1 跟踪设计基础 66
    4.4.2 神经网络实现 68
    4.5 仿真实验 70
    4.6 本章小结 77
    第5章 采用策略学习的先进控制器设计方法 79
    5.1 引言 79
    5.2 问题描述 80
    5.3 策略学习优化控制设计 81
    5.3.1 预补偿系统转化 81
    5.3.2 积分强化学习算法提出 83
    5.3.3 神经网络实现 85
    5.4 仿真实验 87
    5.5 本章小结 94
    第二篇 离散时间系统
    第6章 未知非线性系统自学习优化控制设计 97
    6.1 引言 97
    6.2 问题描述 99
    6.3 迭代GDHP控制设计 101
    6.3.1 非线性系统辨识 101
    6.3.2 迭代ADP算法提出 104
    6.3.3 收敛性分析 105
    6.3.4 设计步骤 110
    6.3.5 基于GDHP技术的实现方案 111
    6.4 迭代SN-DHP控制设计 114
    6.4.1 改进的辨识方法 114
    6.4.2 改进的迭代ADP算法 117
    6.4.3 基于SN-DHP技术的实现方案 118
    6.5 仿真实验 121
    6.5.1 迭代GDHP方法验证 121
    6.5.2 迭代SN-DHP方法验证 126
    6.6 本章小结 130
    第7章 迭代神经动态规划近似最优反馈调节 131
    7.1 引言 131
    7.2 问题描述 132
    7.3 迭代NDP控制设计 133
    7.3.1 迭代算法及其收敛性分析 133
    7.3.2 基于NDP技术的实现方案 135
    7.3.3 具体的算法设计步骤 139
    7.4 仿真实验 140
    7.5 本章小结 145
    第8章 具有外部干扰的非线性系统轨迹跟踪 147
    8.1 引言 147
    8.2 问题描述 148
    8.3 无模型H1跟踪控制设计 150
    8.3.1 非线性系统辨识 150
    8.3.2 迭代算法提出 153
    8.3.3 收敛性分析 156
    8.3.4 基于DHP技术的实现方案 159
    8.4 仿真实验 161
    8.5 本章小结 167
    第9章 混合驱动机制下的智能优化控制策略 169
    9.1 引言 169
    9.2 问题描述 169
    9.3 混合驱动优化控制设计 171
    9.3.1 稳定性分析 171
    9.3.2 混合驱动实现方案 175
    9.4 仿真实验 178
    9.5 本章小结 184
    第10章 离散时间系统智能评判鲁棒镇定初探 185
    10.1 引言 185
    10.2 问题描述 185
    10.3 自学习鲁棒控制设计 187
    10.3.1 离散时间GHJB方程 187
    10.3.2 逐次逼近方法 189
    10.3.3 神经网络实现 192
    10.3.4 鲁棒控制器设计 194
    10.4 仿真实验 196
    10.5 本章小结 202
    参考文献 203
    基本符号 218
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证