0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 理学 > 0701 数学 > 计算统计

相同语种的商品

浏览历史

计算统计


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
计算统计
  • 书号:9787030731890
    作者:田国梁
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:336
    字数:443000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-03-01
  • 所属分类:
  • 定价: ¥188.00元
    售价: ¥148.52元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书是基于作者在香港大学和南方科技大学共14年计算统计教学的经验,同时结合国内其他高校学生和教师的具体情况精心撰写而成的,本书主要内容包括:产生随机变量的方法、几个重要的优化方法、蒙特卡洛积分方法、贝叶斯计算中的MCMC方法,Bootstrap方法等。本书通过组合传统教科书和课堂PPT各自的优点,设置了经纬两条主线,运用块状结构呈现知识点,使得每个知识点自我包含,方便教学;另外在介绍重要概念时,注重启发,逻辑
顺畅,条理清楚。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Chapter 1 Generation of Random Variables 1
    1.1 The Inversion Method 3
    1.1.1 Generating samples from continuous distributions 3
    1.1.2 Generating samples from discrete distributions 7
    1.2 The Grid Method 12
    1.3 The Rejection Method 15
    1.3.1 Generating samples from continuous distributions 15
    1.3.2 The efficiency of the rejection method 18
    1.3.3 Several examples 20
    1.3.4 Log-concave densities 24
    1.4 The Sampling/Importance Resampling (SIR) Method 27
    1.4.1 The SIR without replacement 28
    1.4.2 Theoretical justification 30
    1.5 The Stochastic Representation (SR) Method.32
    1.5.1 The‘d=’operator 32
    1.5.2 Many-to-one SR for univariate case 34
    1.5.3 SR for multivariate case 36
    1.5.4 Mixture representation 39
    1.6 The Conditional Sampling Method 42
    Exercise 1 47
    Chapter 2 Optimization 53
    2.1 A Review of Some Standard Concepts 54
    2.1.1 Order relations 54
    2.1.2 Stationary points 57
    2.1.3 Convex and concave functions 60
    2.1.4 Mean value theorem 61
    2.1.5 Taylor theorem 63
    2.1.6 Rates of convergence 64
    2.1.7 The case of multiple dimensions 64
    2.2 Newton’s Method and Its Variants 66
    2.2.1 Newton’s method and root finding 67
    2.2.2 Newton’s method and optimization 71
    2.2.3 The Newton–Raphson algorithm 72
    2.2.4 The Fisher scoring algorithm 75
    2.2.5 Application to logistic regression 76
    2.3 The Expectation–Maximization (EM) Algorithm 80
    2.3.1 The formulation of the EM algorithm 81
    2.3.2 The ascent property of the EM algorithm 89
    2.3.3 Missing information principle and standard errors 92
    2.4 The ECM Algorithm 95
    2.5 Minorization–Maximization (MM) Algorithms 100
    2.5.1 A brief review of MM algorithms 100
    2.5.2 The MM idea 101
    2.5.3 The quadratic lower–bound algorithm 103
    2.5.4 The De Pierro algorithm 106
    Exercise 2 115
    Chapter 3 Integration 125
    3.1 Laplace Approximations 126
    3.2 Riemannian Simulation 129
    3.2.1 Classical Monte Carlo integration 129
    3.2.2 Motivation for Riemannian simulation 132
    3.2.3 Variance of the Riemannian sum estimator 133
    3.3 The Importance Sampling Method 135
    3.3.1 The formulation of the importance sampling method 135
    3.3.2 The weighted estimator 138
    3.4 Variance Reduction 141
    3.4.1 Antithetic variables 141
    3.4.2 Control variables 145
    Exercise 3 146
    Chapter 4 Markov Chain Monte Carlo Methods 149
    4.1 Bayes Formulae and Inverse Bayes Formulae (IBF) 151
    4.1.1 The point,function- and sampling-wise IBF 152
    4.1.2 Monte Carlo versions of the IBF 160
    4.1.3 Generalization to the case of three random variables 163
    4.2 The Bayesian Methodology 163
    4.2.1 The posterior distribution 165
    4.2.2 Nuisance parameters 167
    4.2.3 Posterior predictive distribution 169
    4.2.4 Bayes factor 172
    4.2.5 Estimation of marginal likelihood 173
    4.3 The Data Augmentation (DA) Algorithm 175
    4.3.1 Missing data mechanism 175
    4.3.2 The idea of data augmentation 177
    4.3.3 The original DA algorithm 178
    4.3.4 Connection with the IBF 180
    4.4 The Gibbs sampler 181
    4.4.1 The formulation of the Gibbs sampling 182
    4.4.2 The two–block Gibbs sampling 184
    4.5 The Exact IBF Sampling 187
    4.6 The IBF sampler 191
    4.6.1 Background and the basic idea 191
    4.6.2 The formulation of the IBF sampler 192
    4.6.3 Theoretical justification for choosing θ0 =.θ 194
    Exercise 4 196
    Chapter 5 Bootstrap Methods 203
    5.1 Bootstrap Confidence Intervals 203
    5.1.1 Parametric bootstrap 203
    5.1.2 Non-parametric bootstrap 213
    5.2 Hypothesis Testing with the Bootstrap 219
    5.2.1 Testing equality of two unknown distributions 219
    5.2.2 Testing equality of two group means 223
    5.2.3 One–sample problem 228
    Exercise 5 231
    Appendix A Some Statistical Distributions and Stochastic
    Processes 233
    A.1 Discrete Distributions 233
    A.1.1 Finite discrete distribution 233
    A.1.2 Hypergeometric distribution 234
    A.1.3 Binomial and related distributions 235
    A.1.4 Poisson and related distributions 237
    A.1.5 Negative–binomial and related distributions 240
    A.1.6 Generalized Poisson and related distributions 242
    A.1.7 Multinomial and related distributions 243
    A.2 Continuous Distributions 245
    A.2.1 Uniform, beta and Dirichlet distributions 245
    A.2.2 Logistic and Laplace distributions 248
    A.2.3 Exponential, gamma and inverse gamma distributions 249
    A.2.4 Chi-square, F and inverse chi-square distributions 251
    A.2.5 Normal, lognormal and inverse Gaussian distributions 252
    A.2.6 Multivariate normal distribution 254
    A.2.7 Student’s t and multivariate t distributions 255
    A.2.8 Wishart and inverse Wishart distributions 256
    A.3 Stochastic Processes 258
    A.3.1 Homogeneous Poisson process 258
    A.3.2 Nonhomogeneous Poisson process 259
    Appendix B R Programming 261
    B.1 Basic Commands 262
    B.1.1 Expressions 262
    B.1.2 Assignment operator 266
    B.2 Vectors and Matrices 268
    B.2.1 Vectors 268
    B.2.2 Matrices 276
    B.3 Lists, Data Frames and Arrays 284
    B.3.1 Lists 284
    B.3.2 Data frames 287
    B.3.3 Arrays 291
    B.4 Flow Control 292
    B.5 User Functions 294
    B.6 Some Commonly–Used R Functions for Data Analysis 295
    Appendix C Introduction of Latent Variables Methods 301
    C.1 MLEs of Parameters in t Distribution 301
    C.2 MLEs of Parameters in the Poisson Additive Model 305
    C.3 MLEs of Parameters in Constrained Normal Models 308
    C.4 Binormal Model with Missing Data 312
    List of Figures 315
    List of Tables 317
    List of Acronyms 319
    List of Symbols 321
    References 325
    Subject Index 333
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证